Source code for sas.qtgui.Plotting.PlotUtilities

import sys
import numpy
import string

from collections import OrderedDict

# MPL shapes dictionary with some extra styles rendered internally.
# Ordered for consistent display in combo boxes
SHAPES = OrderedDict([
        ('Circle' , 'o'),
        ('Point' , '.'),
        ('Pixel' , ','),
        ('Triangle Down' , 'v'),
        ('Triangle Up' , '^'),
        ('Triangle Left' , '<'),
        ('Triangle Right' , '>'),
        ('Octagon' , '8'),
        ('Square' , 's'),
        ('Pentagon' , 'p'),
        ('Star' , '*'),
        ('Hexagon1' , 'h'),
        ('Hexagon2' , 'H'),
        ('Cross +' , 'p'),
        ('Cross X ' , 'x'),
        ('Diamond' , 'D'),
        ('Thin Diamond' , 'd'),
        ('Line' , '-'),
        ('Dash' , '--'),
        ('Vline' , 'vline'),
        ('Step' , 'step'),
])

# MPL Colors dictionary. Ordered for consistent display
COLORS = OrderedDict([
        ('Blue', '#1f77b4'),
        ('Green', '#2ca02c'),
        ('Red', '#d62728'),
        ('Cyan', '#17becf'),
        ('Magenta', '#e377c2'),
        ('Yellow', '#bcbd22'),
        ('Black', '#000000'),
        ('Custom', 'x'),
])

[docs]def build_matrix(data, qx_data, qy_data): """ Build a matrix for 2d plot from a vector Returns a matrix (image) with ~ square binning Requirement: need 1d array formats of data, qx_data, and qy_data where each one corresponds to z, x, or y axis values """ # No qx or qy given in a vector format if qx_data is None or qy_data is None \ or qx_data.ndim != 1 or qy_data.ndim != 1: return data # maximum # of loops to fillup_pixels # otherwise, loop could never stop depending on data max_loop = 1 # get the x and y_bin arrays. x_bins, y_bins = get_bins(qx_data, qy_data) # set zero to None #Note: Can not use scipy.interpolate.Rbf: # 'cause too many data points (>10000)<=JHC. # 1d array to use for weighting the data point averaging #when they fall into a same bin. weights_data = numpy.ones([data.size]) # get histogram of ones w/len(data); this will provide #the weights of data on each bins weights, xedges, yedges = numpy.histogram2d(x=qy_data, y=qx_data, bins=[y_bins, x_bins], weights=weights_data) # get histogram of data, all points into a bin in a way of summing image, xedges, yedges = numpy.histogram2d(x=qy_data, y=qx_data, bins=[y_bins, x_bins], weights=data) # Now, normalize the image by weights only for weights>1: # If weight == 1, there is only one data point in the bin so # that no normalization is required. image[weights > 1] = image[weights > 1] / weights[weights > 1] # Set image bins w/o a data point (weight==0) as None (was set to zero # by histogram2d.) image[weights == 0] = None # Fill empty bins with 8 nearest neighbors only when at least #one None point exists loop = 0 # do while loop until all vacant bins are filled up up #to loop = max_loop while not(numpy.isfinite(image[weights == 0])).all(): if loop >= max_loop: # this protects never-ending loop break image = fillupPixels(image=image, weights=weights) loop += 1 return image
[docs]def get_bins(qx_data, qy_data): """ get bins return x_bins and y_bins: 1d arrays of the index with ~ square binning Requirement: need 1d array formats of qx_data, and qy_data where each one corresponds to x, or y axis values """ # No qx or qy given in a vector format if qx_data is None or qy_data is None \ or qx_data.ndim != 1 or qy_data.ndim != 1: return data # find max and min values of qx and qy xmax = qx_data.max() xmin = qx_data.min() ymax = qy_data.max() ymin = qy_data.min() # calculate the range of qx and qy: this way, it is a little # more independent x_size = xmax - xmin y_size = ymax - ymin # estimate the # of pixels on each axes npix_y = int(numpy.floor(numpy.sqrt(len(qy_data)))) npix_x = int(numpy.floor(len(qy_data) / npix_y)) # bin size: x- & y-directions xstep = x_size / (npix_x - 1) ystep = y_size / (npix_y - 1) # max and min taking account of the bin sizes xmax = xmax + xstep / 2.0 xmin = xmin - xstep / 2.0 ymax = ymax + ystep / 2.0 ymin = ymin - ystep / 2.0 # store x and y bin centers in q space x_bins = numpy.linspace(xmin, xmax, npix_x) y_bins = numpy.linspace(ymin, ymax, npix_y) #set x_bins and y_bins return x_bins, y_bins
[docs]def fillupPixels(image=None, weights=None): """ Fill z values of the empty cells of 2d image matrix with the average over up-to next nearest neighbor points :param image: (2d matrix with some zi = None) :return: image (2d array ) :TODO: Find better way to do for-loop below """ # No image matrix given if image is None or numpy.ndim(image) != 2 \ or numpy.isfinite(image).all() \ or weights is None: return image # Get bin size in y and x directions len_y = len(image) len_x = len(image[1]) temp_image = numpy.zeros([len_y, len_x]) weit = numpy.zeros([len_y, len_x]) # do for-loop for all pixels for n_y in range(len(image)): for n_x in range(len(image[1])): # find only null pixels if weights[n_y][n_x] > 0 or numpy.isfinite(image[n_y][n_x]): continue else: # find 4 nearest neighbors # check where or not it is at the corner if n_y != 0 and numpy.isfinite(image[n_y - 1][n_x]): temp_image[n_y][n_x] += image[n_y - 1][n_x] weit[n_y][n_x] += 1 if n_x != 0 and numpy.isfinite(image[n_y][n_x - 1]): temp_image[n_y][n_x] += image[n_y][n_x - 1] weit[n_y][n_x] += 1 if n_y != len_y - 1 and numpy.isfinite(image[n_y + 1][n_x]): temp_image[n_y][n_x] += image[n_y + 1][n_x] weit[n_y][n_x] += 1 if n_x != len_x - 1 and numpy.isfinite(image[n_y][n_x + 1]): temp_image[n_y][n_x] += image[n_y][n_x + 1] weit[n_y][n_x] += 1 # go 4 next nearest neighbors when no non-zero # neighbor exists if n_y != 0 and n_x != 0 and\ numpy.isfinite(image[n_y - 1][n_x - 1]): temp_image[n_y][n_x] += image[n_y - 1][n_x - 1] weit[n_y][n_x] += 1 if n_y != len_y - 1 and n_x != 0 and \ numpy.isfinite(image[n_y + 1][n_x - 1]): temp_image[n_y][n_x] += image[n_y + 1][n_x - 1] weit[n_y][n_x] += 1 if n_y != len_y and n_x != len_x - 1 and \ numpy.isfinite(image[n_y - 1][n_x + 1]): temp_image[n_y][n_x] += image[n_y - 1][n_x + 1] weit[n_y][n_x] += 1 if n_y != len_y - 1 and n_x != len_x - 1 and \ numpy.isfinite(image[n_y + 1][n_x + 1]): temp_image[n_y][n_x] += image[n_y + 1][n_x + 1] weit[n_y][n_x] += 1 # get it normalized ind = (weit > 0) image[ind] = temp_image[ind] / weit[ind] return image
[docs]def rescale(lo, hi, step, pt=None, bal=None, scale='linear'): """ Rescale (lo,hi) by step, returning the new (lo,hi) The scaling is centered on pt, with positive values of step driving lo/hi away from pt and negative values pulling them in. If bal is given instead of point, it is already in [0,1] coordinates. This is a helper function for step-based zooming. """ # Convert values into the correct scale for a linear transformation # TODO: use proper scale transformers loprev = lo hiprev = hi if scale == 'log': assert lo > 0 if lo > 0: lo = numpy.log10(lo) if hi > 0: hi = numpy.log10(hi) if pt is not None: pt = numpy.log10(pt) # Compute delta from axis range * %, or 1-% if persent is negative if step > 0: delta = float(hi - lo) * step / 100 else: delta = float(hi - lo) * step / (100 - step) # Add scale factor proportionally to the lo and hi values, # preserving the # point under the mouse if bal is None: bal = float(pt - lo) / (hi - lo) lo = lo - (bal * delta) hi = hi + (1 - bal) * delta # Convert transformed values back to the original scale if scale == 'log': if (lo <= -250) or (hi >= 250): lo = loprev hi = hiprev else: lo, hi = numpy.power(10., lo), numpy.power(10., hi) return (lo, hi)
[docs]def getValidColor(color): ''' Returns a valid matplotlib color ''' if color is None: return color # Check if it's an int if isinstance(color, int): # Check if it's within the range if 0 <= color <=6: color = list(COLORS.values())[color] elif isinstance(color, str): # This could be a one letter code if len(color) == 1: if not color in list (COLORS.values()): raise AttributeError else: # or an RGB string assert(color[0]=="#" and len(color) == 7) assert(all(c in string.hexdigits for c in color[1:])) else: raise AttributeError return color