Source code for sas.sascalc.dataloader.readers.red2d_reader
"""
TXT/IGOR 2D Q Map file reader
"""
#####################################################################
#This software was developed by the University of Tennessee as part of the
#Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
#project funded by the US National Science Foundation.
#See the license text in license.txt
#copyright 2008, University of Tennessee
######################################################################
import os
import time
import numpy as np
from sas.sascalc.data_util.nxsunit import Converter
from ..data_info import plottable_2D, DataInfo, Detector
from ..file_reader_base_class import FileReader
from ..loader_exceptions import FileContentsException
[docs]def check_point(x_point):
"""
check point validity
"""
# set zero for non_floats
try:
return float(x_point)
except Exception:
return 0
[docs]class Reader(FileReader):
""" Simple data reader for Igor data files """
## File type
type_name = "IGOR/DAT 2D Q_map"
## Wildcards
type = ["IGOR/DAT 2D file in Q_map (*.dat)|*.DAT"]
## Extension
ext = ['.DAT', '.dat']
[docs] def write(self, filename, data):
"""
Write to .dat
:param filename: file name to write
:param data: data2D
"""
# Write the file
try:
fd = open(filename, 'w')
t = time.localtime()
time_str = time.strftime("%H:%M on %b %d %y", t)
header_str = "Data columns are Qx - Qy - I(Qx,Qy)\n\nASCII data"
header_str += " created at %s \n\n" % time_str
# simple 2D header
fd.write(header_str)
# write qx qy I values
for i in range(len(data.data)):
fd.write("%g %g %g\n" % (data.qx_data[i],
data.qy_data[i],
data.data[i]))
finally:
fd.close()
[docs] def get_file_contents(self):
# Read file
buf = self.readall()
self.f_open.close()
# Instantiate data object
self.current_dataset = plottable_2D()
self.current_datainfo = DataInfo()
self.current_datainfo.filename = os.path.basename(self.f_open.name)
self.current_datainfo.detector.append(Detector())
# Get content
data_started = False
## Defaults
lines = buf.split('\n')
x = []
y = []
wavelength = None
distance = None
transmission = None
pixel_x = None
pixel_y = None
is_info = False
is_center = False
# Remove the last lines before the for loop if the lines are empty
# to calculate the exact number of data points
count = 0
while (len(lines[len(lines) - (count + 1)].lstrip().rstrip()) < 1):
del lines[len(lines) - (count + 1)]
count = count + 1
#Read Header and find the dimensions of 2D data
line_num = 0
# Old version NIST files: 0
ver = 0
for line in lines:
line_num += 1
## Reading the header applies only to IGOR/NIST 2D q_map data files
# Find setup info line
if is_info:
is_info = False
line_toks = line.split()
# Wavelength in Angstrom
try:
wavelength = float(line_toks[1])
# Wavelength is stored in angstroms; convert if necessary
if self.current_datainfo.source.wavelength_unit != 'A':
conv = Converter('A')
wavelength = conv(wavelength,
units=self.current_datainfo.source.wavelength_unit)
except Exception:
pass # Not required
try:
distance = float(line_toks[3])
# Distance is stored in meters; convert if necessary
if self.current_datainfo.detector[0].distance_unit != 'm':
conv = Converter('m')
distance = conv(distance,
units=self.current_datainfo.detector[0].distance_unit)
except Exception:
pass # Not required
try:
transmission = float(line_toks[4])
except Exception:
pass # Not required
if line.count("LAMBDA") > 0:
is_info = True
# Find center info line
if is_center:
is_center = False
line_toks = line.split()
# Center in bin number
center_x = float(line_toks[0])
center_y = float(line_toks[1])
if line.count("BCENT") > 0:
is_center = True
# Check version
if line.count("Data columns") > 0:
if line.count("err(I)") > 0:
ver = 1
# Find data start
if line.count("ASCII data") > 0:
data_started = True
continue
## Read and get data.
if data_started:
line_toks = line.split()
if len(line_toks) == 0:
#empty line
continue
# the number of columns must be stayed same
col_num = len(line_toks)
break
# Make numpy array to remove header lines using index
lines_array = np.array(lines)
# index for lines_array
lines_index = np.arange(len(lines))
# get the data lines
data_lines = lines_array[lines_index >= (line_num - 1)]
# Now we get the total number of rows (i.e., # of data points)
row_num = len(data_lines)
# make it as list again to control the separators
data_list = " ".join(data_lines.tolist())
# split all data to one big list w/" "separator
data_list = data_list.split()
# Check if the size is consistent with data, otherwise
#try the tab(\t) separator
# (this may be removed once get the confidence
#the former working all cases).
if len(data_list) != (len(data_lines)) * col_num:
data_list = "\t".join(data_lines.tolist())
data_list = data_list.split()
# Change it(string) into float
#data_list = map(float,data_list)
data_list1 = list(map(check_point, data_list))
# numpy array form
data_array = np.array(data_list1)
# Redimesion based on the row_num and col_num,
#otherwise raise an error.
try:
data_point = data_array.reshape(row_num, col_num).transpose()
except Exception:
msg = "red2d_reader can't read this file: Incorrect number of data points provided."
raise FileContentsException(msg)
## Get the all data: Let's HARDcoding; Todo find better way
# Defaults
dqx_data = np.zeros(0)
dqy_data = np.zeros(0)
err_data = np.ones(row_num)
qz_data = np.zeros(row_num)
mask = np.ones(row_num, dtype=bool)
# Get from the array
qx_data = data_point[0]
qy_data = data_point[1]
data = data_point[2]
if ver == 1:
if col_num > (2 + ver):
err_data = data_point[(2 + ver)]
if col_num > (3 + ver):
qz_data = data_point[(3 + ver)]
if col_num > (4 + ver):
dqx_data = data_point[(4 + ver)]
if col_num > (5 + ver):
dqy_data = data_point[(5 + ver)]
# Column '6 + ver' is the shadow factor value. A separate mask column
# was added to account for self-drawn masks.
# if col_num > (6 + ver): mask[data_point[(6 + ver)] < 1] = False
if col_num > (7 + ver):
mask = np.invert(np.asarray(data_point[(7 + ver)], dtype=bool))
q_data = np.sqrt(qx_data*qx_data+qy_data*qy_data+qz_data*qz_data)
# Store limits of the image in q space
xmin = np.min(qx_data)
xmax = np.max(qx_data)
ymin = np.min(qy_data)
ymax = np.max(qy_data)
# Find unique Qx and Qy values for data binning and visualization
# len(x_bins) * len(y_bins) ~= len(qx_data) ~= len(qy_data)
x_bins = np.unique(qx_data)
y_bins = np.unique(qy_data)
# For non-uniform qx_data and/or qy_data
# Cases: Rotated detectors, floating point variations
if round(len(x_bins) * len(y_bins) / len(qx_data)) >= 2:
# qx_data increases along rows => travel along a single pixel line
num_qx = np.argmax(np.hstack((qx_data[1:] < qx_data[:-1], True)))
x_bins = qx_data[:num_qx + 1]
# qy_data increases along columns => transpose qx_data shape
qy = np.reshape(qy_data, (len(qx_data)//len(x_bins), len(x_bins)))
y_bins = np.transpose(qy)[0].tolist()
# Store data in outputs
self.current_dataset.data = data
if (err_data == 1).all():
self.current_dataset.err_data = np.sqrt(np.abs(data))
self.current_dataset.err_data[self.current_dataset.err_data == 0.0] = 1.0
else:
self.current_dataset.err_data = err_data
self.current_dataset.qx_data = qx_data
self.current_dataset.qy_data = qy_data
self.current_dataset.q_data = q_data
self.current_dataset.mask = mask
self.current_dataset.x_bins = x_bins
self.current_dataset.y_bins = y_bins
self.current_dataset.xmin = xmin
self.current_dataset.xmax = xmax
self.current_dataset.ymin = ymin
self.current_dataset.ymax = ymax
self.current_datainfo.source.wavelength = wavelength
# Store pixel size in mm
self.current_datainfo.detector[0].pixel_size.x = pixel_x
self.current_datainfo.detector[0].pixel_size.y = pixel_y
# Store the sample to detector distance
self.current_datainfo.detector[0].distance = distance
# optional data: if all of dq data == 0, do not pass to output
if len(dqx_data) == len(qx_data) and dqx_data.any() != 0:
# if no dqx_data, do not pass dqy_data.
# (1 axis dq is not supported yet).
if len(dqy_data) == len(qy_data) and dqy_data.any() != 0:
# Currently we do not support dq parr, perp.
# transfer the comp. to cartesian coord. for newer version.
if ver != 1:
diag = np.sqrt(qx_data * qx_data + qy_data * qy_data)
cos_th = qx_data / diag
sin_th = qy_data / diag
self.current_dataset.dqx_data = np.sqrt(
(dqx_data * cos_th)**2 + (dqy_data * sin_th)**2)
self.current_dataset.dqy_data = np.sqrt(
(dqx_data * sin_th)**2 + (dqy_data * cos_th)**2)
else:
self.current_dataset.dqx_data = dqx_data
self.current_dataset.dqy_data = dqy_data
# Units of axes
self.current_dataset = self.set_default_2d_units(self.current_dataset)
# Store loading process information
self.current_datainfo.meta_data['loader'] = self.type_name
self.send_to_output()