Source code for sasmodels.guyou

# Copyright 2013-2016 Mike Bostock
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
#   list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.
#
# * Neither the name of the author nor the names of contributors may be used to
#   endorse or promote products derived from this software without specific prior
#   written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# https://github.com/d3/d3-geo-projection
# commit fd2886555e46b35163c7b898d43c7d1bcebbba7c 2016-07-02
#
# 2017-11-01 Paul Kienzle
# * converted to python, with degrees rather than radians
"""
Convert between latitude-longitude and Guyou map coordinates.
"""

from __future__ import division, print_function

import numpy as np
from numpy import sqrt, pi, tan, cos, sin, sign, radians, degrees
from numpy import sinh, arctan as atan

# scipy version of special functions
from scipy.special import ellipj as ellipticJ, ellipkinc as ellipticF

_ = """
# mpmath version of special functions
import mpmath as mp
sn, cn, dn = [mp.ellipfun(v) for v in 'sn', 'cn', 'dn']

def ellipticJi(u, v, m):
    z = u+v*1j
    return sn(z, m), cn(z, m), dn(z, m)

def ellipticJ(u, m):
    s, c, d = sn(u, m), cn(u, m), dn(u, m)
    phi = mp.asin(s)
    return s, c, d, phi

def ellipticFi(phi, psi, m):
    z = phi + psi*1j
    return mp.ellipf(z, m)

def ellipticF(phi, m):
    return mp.ellipf(phi, m)
"""

[docs]def ellipticJi(u, v, m): """Returns [sn, cn, dn](u + iv|m).""" scalar = np.isscalar(u) and np.isscalar(v) and np.isscalar(m) u, v, m = np.broadcast_arrays(u, v, m) result = np.empty_like([u, u, u], 'D') real = (v == 0) imag = (u == 0) mixed = ~(real|imag) result[:, real] = _ellipticJi_real(u[real], m[real]) result[:, imag] = _ellipticJi_imag(v[imag], m[imag]) result[:, mixed] = _ellipticJi(u[mixed], v[mixed], m[mixed]) return result[0, :] if scalar else result
[docs]def _ellipticJi_real(u, m): sn, cn, dn, _ = ellipticJ(u, m) return sn, cn, dn
[docs]def _ellipticJi_imag(v, m): sn, cn, dn, _ = ellipticJ(v, 1-m) return 1j*sn/cn, 1/cn, dn/cn
[docs]def _ellipticJi(u, v, m): # Ignoring special cases for now. # u=0: (1j*b[0]/b[1], 1/b[1], b[2]/b[1]) # v=0: (a[0], a[1], a[2]) a = ellipticJ(u, m) b = ellipticJ(v, 1 - m) c = b[1]**2 + m * (a[0] * b[0])**2 return [ (a[0] * b[2] / c) + 1j*(a[1] * a[2] * b[0] * b[1] / c), (a[1] * b[1] / c) + 1j*(-a[0] * a[2] * b[0] * b[2] / c), (a[2] * b[1] * b[2] / c) + 1j*(-m * a[0] * a[1] * b[0] / c), ]
[docs]def ellipticFi(phi, psi, m): """Returns F(phi+ipsi|m). See Abramowitz and Stegun, 17.4.11.""" if np.any(phi == 0): scalar = np.isscalar(phi) and np.isscalar(psi) and np.isscalar(m) phi, psi, m = np.broadcast_arrays(phi, psi, m) result = np.empty_like(phi, 'D') index = (phi == 0) result[index] = ellipticF(atan(sinh(abs(phi[index]))), 1-m[index]) * sign(psi[index]) result[~index] = ellipticFi(phi[~index], psi[~index], m[~index]) return result.reshape(1)[0] if scalar else result r = abs(phi) i = abs(psi) sinhpsi2 = sinh(i)**2 cscphi2 = 1 / sin(r)**2 cotphi2 = 1 / tan(r)**2 b = -(cotphi2 + m * (sinhpsi2 * cscphi2) - 1 + m) c = (m - 1) * cotphi2 cotlambda2 = (-b + sqrt(b * b - 4 * c)) / 2 re = ellipticF(atan(1 / sqrt(cotlambda2)), m) * sign(phi) im = ellipticF(atan(sqrt(np.maximum(0, (cotlambda2 / cotphi2 - 1) / m))), 1 - m) * sign(psi) return re + 1j*im
SQRT2 = sqrt(2) # [PAK] renamed k_ => cos_u, k => sin_u, k*k => sinsq_u to avoid k,K confusion # cos_u = 0.171572875253809902396622551580603842860656249246103853646... # sinsq_u = 0.970562748477140585620264690516376942836062504523376878120... # K = 3.165103454447431823666270142140819753058976299237578486994...
[docs]def guyou(lam, phi): """Transform from (latitude, longitude) to point (x, y)""" # [PAK] wrap into [-pi/2, pi/2] radians x, y = np.asarray(lam), np.asarray(phi) xn, x = divmod(x+90, 180) yn, y = divmod(y+90, 180) xn, lam = xn*180, radians(x-90) yn, phi = yn*180, radians(y-90) # Compute constant K cos_u = (SQRT2 - 1) / (SQRT2 + 1) sinsq_u = 1 - cos_u**2 K = ellipticF(pi/2, sinsq_u) # [PAK] simplify expressions, using the fact that f = -1 # Note: exp(f log(x)) => 1/x, cos(f x) => cos(x), sin(f x) => -sin(x) r = 1/(tan(pi/4 + abs(phi)/2) * sqrt(cos_u)) at = atan(r * (cos(lam) - 1j*sin(lam))) t = ellipticFi(at.real, at.imag, sinsq_u) x, y = (-t.imag, sign(phi + (phi == 0))*(0.5 * K - t.real)) # [PAK] convert to degrees, and return to original tile return degrees(x)+xn, degrees(y)+yn
[docs]def guyou_invert(x, y): """Transform from point (x, y) on plot to (latitude, longitude)""" # [PAK] wrap into [-pi/2, pi/2] radians x, y = np.asarray(x), np.asarray(y) xn, x = divmod(x+90, 180) yn, y = divmod(y+90, 180) xn, x = xn*180, radians(x-90) yn, y = yn*180, radians(y-90) # compute constant K cos_u = (SQRT2 - 1) / (SQRT2 + 1) sinsq_u = 1 - cos_u**2 K = ellipticF(pi/2, sinsq_u) # [PAK] simplify expressions, using the fact that f = -1 j = ellipticJi(K/2 - y, -x, sinsq_u) tn = j[0]/j[1] # j[0], j[1] are complex # Note: -atan2(im(x)/re(x)) => angle(x) lam = -np.angle(tn) # Note: exp(0.5/f log(a re(x)^2 + a im(x)^2)) => 1/(sqrt(a) |x|) phi = 2*atan(1/sqrt(cos_u)/abs(tn)) - pi/2 # [PAK] convert to degrees, and return to original tile return degrees(lam)+xn, degrees(phi)+yn
[docs]def plot_grid(): """Plot the latitude-longitude grid for Guyou transform""" import matplotlib.pyplot as plt from numpy import linspace lat_line = linspace(-90, 90, 400) long_line = linspace(-90, 90, 400) #scale = 1 limit, step, scale = 90, 10, 2 plt.subplot(211) for lat in range(-limit, limit+1, step): x, y = guyou(scale*lat_line, scale*lat) plt.plot(x, y, 'g') for longitude in range(-limit, limit+1, step): x, y = guyou(scale*longitude, scale*long_line) plt.plot(x, y, 'b') #plt.xlabel('longitude') plt.ylabel('latitude') plt.title('forward transform') plt.subplot(212) for lat in range(-limit, limit+1, step): x, y = guyou_invert(scale*lat_line, scale*lat) plt.plot(x, y, 'g') for longitude in range(-limit, limit+1, step): x, y = guyou_invert(scale*longitude, scale*long_line) plt.plot(x, y, 'b') plt.xlabel('longitude') plt.ylabel('latitude') plt.title('inverse transform')
[docs]def main(): """Show the Guyou transformation""" plot_grid() import matplotlib.pyplot as plt plt.show()
if __name__ == "__main__": main() _ = """ // Javascript source for elliptic functions // // Returns [sn, cn, dn](u + iv|m). export function ellipticJi(u, v, m) { var a, b, c; if (!u) { b = ellipticJ(v, 1 - m); return [ [0, b[0] / b[1]], [1 / b[1], 0], [b[2] / b[1], 0] ]; } a = ellipticJ(u, m); if (!v) return [[a[0], 0], [a[1], 0], [a[2], 0]]; b = ellipticJ(v, 1 - m); c = b[1] * b[1] + m * a[0] * a[0] * b[0] * b[0]; return [ [a[0] * b[2] / c, a[1] * a[2] * b[0] * b[1] / c], [a[1] * b[1] / c, -a[0] * a[2] * b[0] * b[2] / c], [a[2] * b[1] * b[2] / c, -m * a[0] * a[1] * b[0] / c] ]; } // Returns [sn, cn, dn, ph](u|m). export function ellipticJ(u, m) { var ai, b, phi, t, twon; if (m < epsilon) { t = sin(u); b = cos(u); ai = m * (u - t * b) / 4; return [ t - ai * b, b + ai * t, 1 - m * t * t / 2, u - ai ]; } if (m >= 1 - epsilon) { ai = (1 - m) / 4; b = cosh(u); t = tanh(u); phi = 1 / b; twon = b * sinh(u); return [ t + ai * (twon - u) / (b * b), phi - ai * t * phi * (twon - u), phi + ai * t * phi * (twon + u), 2 * atan(exp(u)) - halfPi + ai * (twon - u) / b ]; } var a = [1, 0, 0, 0, 0, 0, 0, 0, 0], c = [sqrt(m), 0, 0, 0, 0, 0, 0, 0, 0], i = 0; b = sqrt(1 - m); twon = 1; while (abs(c[i] / a[i]) > epsilon && i < 8) { ai = a[i++]; c[i] = (ai - b) / 2; a[i] = (ai + b) / 2; b = sqrt(ai * b); twon *= 2; } phi = twon * a[i] * u; do { t = c[i] * sin(b = phi) / a[i]; phi = (asin(t) + phi) / 2; } while (--i); // [PAK] Cephes uses dn = sqrt(1 - m*sin^2 phi) rather than cos(phi)/cos(phi-b) // DLMF says the second version is unstable near x = K. return [sin(phi), t = cos(phi), t / cos(phi - b), phi]; } // calculate F(phi+ipsi|m). // see Abramowitz and Stegun, 17.4.11. export function ellipticFi(phi, psi, m) { var r = abs(phi), i = abs(psi), sinhpsi = sinh(i); if (r) { var cscphi = 1 / sin(r), cotphi2 = 1 / (tan(r) * tan(r)), b = -(cotphi2 + m * (sinhpsi * sinhpsi * cscphi * cscphi) - 1 + m), c = (m - 1) * cotphi2, cotlambda2 = (-b + sqrt(b * b - 4 * c)) / 2; return [ ellipticF(atan(1 / sqrt(cotlambda2)), m) * sign(phi), ellipticF(atan(sqrt((cotlambda2 / cotphi2 - 1) / m)), 1 - m) * sign(psi) ]; } return [ 0, ellipticF(atan(sinhpsi), 1 - m) * sign(psi) ]; } // Calculate F(phi|m) where m = k^2 = sin(alpha)^2. // See Abramowitz and Stegun, 17.6.7. export function ellipticF(phi, m) { if (!m) return phi; if (m === 1) return log(tan(phi / 2 + quarterPi)); var a = 1, b = sqrt(1 - m), c = sqrt(m); for (var i = 0; abs(c) > epsilon; i++) { if (phi % pi) { var dPhi = atan(b * tan(phi) / a); if (dPhi < 0) dPhi += pi; phi += dPhi + ~~(phi / pi) * pi; } else phi += phi; c = (a + b) / 2; b = sqrt(a * b); c = ((a = c) - b) / 2; } return phi / (pow(2, i) * a); export function guyouRaw(lambda, phi) { var k_ = (sqrt2 - 1) / (sqrt2 + 1), k = sqrt(1 - k_ * k_), K = ellipticF(halfPi, k * k), f = -1, psi = log(tan(pi / 4 + abs(phi) / 2)), r = exp(f * psi) / sqrt(k_), at = guyouComplexAtan(r * cos(f * lambda), r * sin(f * lambda)), t = ellipticFi(at[0], at[1], k * k); return [-t[1], (phi >= 0 ? 1 : -1) * (0.5 * K - t[0])]; } function guyouComplexAtan(x, y) { var x2 = x * x, y_1 = y + 1, t = 1 - x2 - y * y; return [ 0.5 * ((x >= 0 ? halfPi : -halfPi) - atan2(t, 2 * x)), -0.25 * log(t * t + 4 * x2) +0.5 * log(y_1 * y_1 + x2) ]; } function guyouComplexDivide(a, b) { var denominator = b[0] * b[0] + b[1] * b[1]; return [ (a[0] * b[0] + a[1] * b[1]) / denominator, (a[1] * b[0] - a[0] * b[1]) / denominator ]; } guyouRaw.invert = function(x, y) { var k_ = (sqrt2 - 1) / (sqrt2 + 1), k = sqrt(1 - k_ * k_), K = ellipticF(halfPi, k * k), f = -1, j = ellipticJi(0.5 * K - y, -x, k * k), tn = guyouComplexDivide(j[0], j[1]), lambda = atan2(tn[1], tn[0]) / f; return [ lambda, 2 * atan(exp(0.5 / f * log(k_ * tn[0] * tn[0] + k_ * tn[1] * tn[1]))) - halfPi ]; }; """