sasdata.data_util package

Submodules

sasdata.data_util.err1d module

Error propogation algorithms for simple arithmetic

Warning: like the underlying numpy library, the inplace operations may return values of the wrong type if some of the arguments are integers, so be sure to create them with floating point inputs.

sasdata.data_util.err1d.add(X, varX, Y, varY)

Addition with error propagation

sasdata.data_util.err1d.add_inplace(X, varX, Y, varY)

In-place addition with error propagation

sasdata.data_util.err1d.div(X, varX, Y, varY)

Division with error propagation

sasdata.data_util.err1d.div_inplace(X, varX, Y, varY)

In-place division with error propagation

sasdata.data_util.err1d.exp(X, varX)

Exponentiation with error propagation

sasdata.data_util.err1d.log(X, varX)

Logarithm with error propagation

sasdata.data_util.err1d.mul(X, varX, Y, varY)

Multiplication with error propagation

sasdata.data_util.err1d.mul_inplace(X, varX, Y, varY)

In-place multiplication with error propagation

sasdata.data_util.err1d.pow(X, varX, n)

X**n with error propagation

sasdata.data_util.err1d.pow_inplace(X, varX, n)

In-place X**n with error propagation

sasdata.data_util.err1d.sub(X, varX, Y, varY)

Subtraction with error propagation

sasdata.data_util.err1d.sub_inplace(X, varX, Y, varY)

In-place subtraction with error propagation

sasdata.data_util.formatnum module

Format values and uncertainties nicely for printing.

format_uncertainty_pm() produces the expanded format v +/- err.

format_uncertainty_compact() produces the compact format v(##), where the number in parenthesis is the uncertainty in the last two digits of v.

format_uncertainty() uses the compact format by default, but this can be changed to use the expanded +/- format by setting format_uncertainty.compact to False.

The formatted string uses only the number of digits warranted by the uncertainty in the measurement.

If the uncertainty is 0 or not otherwise provided, the simple %g floating point format option is used.

Infinite and indefinite numbers are represented as inf and NaN.

Example:

>>> v,dv = 757.2356,0.01032
>>> print format_uncertainty_pm(v,dv)
757.236 +/- 0.010
>>> print format_uncertainty_compact(v,dv)
757.236(10)
>>> print format_uncertainty(v,dv)
757.236(10)
>>> format_uncertainty.compact = False
>>> print format_uncertainty(v,dv)
757.236 +/- 0.010

UncertaintyFormatter() returns a private formatter with its own formatter.compact flag.

class sasdata.data_util.formatnum.UncertaintyFormatter

Bases: object

Value and uncertainty formatter.

The formatter instance will use either the expanded v +/- dv form or the compact v(##) form depending on whether formatter.compact is True or False. The default is True.

__call__(value, uncertainty)

Given value and uncertainty, return a string representation.

__dict__ = mappingproxy({'__module__': 'sasdata.data_util.formatnum', '__doc__': '\n    Value and uncertainty formatter.\n\n    The *formatter* instance will use either the expanded v +/- dv form\n    or the compact v(##) form depending on whether *formatter.compact* is\n    True or False.  The default is True.\n    ', 'compact': True, '__call__': <function UncertaintyFormatter.__call__>, '__dict__': <attribute '__dict__' of 'UncertaintyFormatter' objects>, '__weakref__': <attribute '__weakref__' of 'UncertaintyFormatter' objects>, '__annotations__': {}})
__doc__ = '\n    Value and uncertainty formatter.\n\n    The *formatter* instance will use either the expanded v +/- dv form\n    or the compact v(##) form depending on whether *formatter.compact* is\n    True or False.  The default is True.\n    '
__module__ = 'sasdata.data_util.formatnum'
__weakref__

list of weak references to the object

compact = True
sasdata.data_util.formatnum._format_uncertainty(value, uncertainty, compact)

Implementation of both the compact and the +/- formats.

sasdata.data_util.formatnum.format_uncertainty_compact(value, uncertainty)

Given value v and uncertainty dv, return the compact representation v(##), where ## are the first two digits of the uncertainty.

sasdata.data_util.formatnum.format_uncertainty_pm(value, uncertainty)

Given value v and uncertainty dv, return a string v +/- dv.

sasdata.data_util.formatnum.main()

Run all tests.

This is equivalent to “nosetests –with-doctest”

sasdata.data_util.formatnum.test_compact()
sasdata.data_util.formatnum.test_default()
sasdata.data_util.formatnum.test_pm()

sasdata.data_util.loader_exceptions module

Exceptions specific to loading data.

exception sasdata.data_util.loader_exceptions.DataReaderException(e: str | None = None)

Bases: Exception

Exception for files that were able to mostly load, but had minor issues along the way. Any exceptions of this type should be put into the datainfo.errors

__doc__ = '\n    Exception for files that were able to mostly load, but had minor issues\n    along the way.\n    Any exceptions of this type should be put into the datainfo.errors\n    '
__init__(e: str | None = None)
__module__ = 'sasdata.data_util.loader_exceptions'
__weakref__

list of weak references to the object

exception sasdata.data_util.loader_exceptions.DefaultReaderException(e: str | None = None)

Bases: Exception

Exception for files with no associated reader. This should be thrown by default readers only to tell Loader to try the next reader.

__doc__ = '\n    Exception for files with no associated reader. This should be thrown by\n    default readers only to tell Loader to try the next reader.\n    '
__init__(e: str | None = None)
__module__ = 'sasdata.data_util.loader_exceptions'
__weakref__

list of weak references to the object

exception sasdata.data_util.loader_exceptions.FileContentsException(e: str | None = None)

Bases: Exception

Exception for files with an associated reader, but with no loadable data. This is useful for catching loader or file format issues.

__doc__ = '\n    Exception for files with an associated reader, but with no loadable data.\n    This is useful for catching loader or file format issues.\n    '
__init__(e: str | None = None)
__module__ = 'sasdata.data_util.loader_exceptions'
__weakref__

list of weak references to the object

exception sasdata.data_util.loader_exceptions.NoKnownLoaderException(e: str | None = None)

Bases: Exception

Exception for files with no associated reader based on the file extension of the loaded file. This exception should only be thrown by loader.py.

__doc__ = '\n    Exception for files with no associated reader based on the file\n    extension of the loaded file. This exception should only be thrown by\n    loader.py.\n    '
__init__(e: str | None = None)
__module__ = 'sasdata.data_util.loader_exceptions'
__weakref__

list of weak references to the object

sasdata.data_util.manipulations module

Data manipulations for 2D data sets. Using the meta data information, various types of averaging are performed in Q-space

To test this module use: ` cd test PYTHONPATH=../src/ python2  -m sasdataloader.test.utest_averaging DataInfoTests.test_sectorphi_quarter `

class sasdata.data_util.manipulations.Binning(min_value, max_value, n_bins, base=None)

Bases: object

This class just creates a binning object either linear or log

__dict__ = mappingproxy({'__module__': 'sasdata.data_util.manipulations', '__doc__': '\n    This class just creates a binning object\n    either linear or log\n    ', '__init__': <function Binning.__init__>, 'get_bin_index': <function Binning.get_bin_index>, '__dict__': <attribute '__dict__' of 'Binning' objects>, '__weakref__': <attribute '__weakref__' of 'Binning' objects>, '__annotations__': {}})
__doc__ = '\n    This class just creates a binning object\n    either linear or log\n    '
__init__(min_value, max_value, n_bins, base=None)
Parameters:
  • min_value – the value defining the start of the binning interval.

  • max_value – the value defining the end of the binning interval.

  • n_bins – the number of bins.

  • base – the base used for log, linear binning if None.

Beware that min_value should always be numerically smaller than max_value. Take particular care when binning angles across the 2pi to 0 discontinuity.

__module__ = 'sasdata.data_util.manipulations'
__weakref__

list of weak references to the object

get_bin_index(value)
Parameters:

value – the value in the binning interval whose bin index should be returned. Must be between min_value and max_value.

The general formula logarithm binning is: bin = floor(N * (log(x) - log(min)) / (log(max) - log(min)))

class sasdata.data_util.manipulations.Boxavg(x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0)

Bases: Boxsum

Perform the average of counts in a 2D region of interest.

__call__(data2D)

Perform the sum in the region of interest

Parameters:

data2D – Data2D object

Returns:

average counts, error on average counts

__doc__ = '\n    Perform the average of counts in a 2D region of interest.\n    '
__init__(x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0)
__module__ = 'sasdata.data_util.manipulations'
class sasdata.data_util.manipulations.Boxcut(x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0)

Bases: object

Find a rectangular 2D region of interest.

__call__(data2D)

Find a rectangular 2D region of interest.

Parameters:

data2D – Data2D object

Returns:

mask, 1d array (len = len(data)) with Trues where the data points are inside ROI, otherwise False

__dict__ = mappingproxy({'__module__': 'sasdata.data_util.manipulations', '__doc__': '\n    Find a rectangular 2D region of interest.\n    ', '__init__': <function Boxcut.__init__>, '__call__': <function Boxcut.__call__>, '_find': <function Boxcut._find>, '__dict__': <attribute '__dict__' of 'Boxcut' objects>, '__weakref__': <attribute '__weakref__' of 'Boxcut' objects>, '__annotations__': {}})
__doc__ = '\n    Find a rectangular 2D region of interest.\n    '
__init__(x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0)
__module__ = 'sasdata.data_util.manipulations'
__weakref__

list of weak references to the object

_find(data2D)

Find a rectangular 2D region of interest.

Parameters:

data2D – Data2D object

Returns:

out, 1d array (length = len(data)) with Trues where the data points are inside ROI, otherwise Falses

class sasdata.data_util.manipulations.Boxsum(x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0)

Bases: object

Perform the sum of counts in a 2D region of interest.

__annotations__ = {}
__call__(data2D)

Perform the sum in the region of interest

Parameters:

data2D – Data2D object

Returns:

number of counts, error on number of counts, number of points summed

__dict__ = mappingproxy({'__module__': 'sasdata.data_util.manipulations', '__doc__': '\n    Perform the sum of counts in a 2D region of interest.\n    ', '__init__': <function Boxsum.__init__>, '__call__': <function Boxsum.__call__>, '_sum': <function Boxsum._sum>, '__dict__': <attribute '__dict__' of 'Boxsum' objects>, '__weakref__': <attribute '__weakref__' of 'Boxsum' objects>, '__annotations__': {}})
__doc__ = '\n    Perform the sum of counts in a 2D region of interest.\n    '
__init__(x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0)
__module__ = 'sasdata.data_util.manipulations'
__weakref__

list of weak references to the object

_sum(data2D)

Perform the sum in the region of interest

Parameters:

data2D – Data2D object

Returns:

number of counts, error on number of counts, number of entries summed

class sasdata.data_util.manipulations.CircularAverage(r_min=0.0, r_max=0.0, bin_width=0.0005)

Bases: object

Perform circular averaging on 2D data

The data returned is the distribution of counts as a function of Q

__call__(data2D, ismask=False)

Perform circular averaging on the data

Parameters:

data2D – Data2D object

Returns:

Data1D object

__dict__ = mappingproxy({'__module__': 'sasdata.data_util.manipulations', '__doc__': '\n    Perform circular averaging on 2D data\n\n    The data returned is the distribution of counts\n    as a function of Q\n    ', '__init__': <function CircularAverage.__init__>, '__call__': <function CircularAverage.__call__>, '__dict__': <attribute '__dict__' of 'CircularAverage' objects>, '__weakref__': <attribute '__weakref__' of 'CircularAverage' objects>, '__annotations__': {}})
__doc__ = '\n    Perform circular averaging on 2D data\n\n    The data returned is the distribution of counts\n    as a function of Q\n    '
__init__(r_min=0.0, r_max=0.0, bin_width=0.0005)
__module__ = 'sasdata.data_util.manipulations'
__weakref__

list of weak references to the object

class sasdata.data_util.manipulations.Ring(r_min=0, r_max=0, center_x=0, center_y=0, nbins=36)

Bases: object

Defines a ring on a 2D data set. The ring is defined by r_min, r_max, and the position of the center of the ring.

The data returned is the distribution of counts around the ring as a function of phi.

Phi_min and phi_max should be defined between 0 and 2*pi in anti-clockwise starting from the x- axis on the left-hand side

__call__(data2D)

Apply the ring to the data set. Returns the angular distribution for a given q range

Parameters:

data2D – Data2D object

Returns:

Data1D object

__dict__ = mappingproxy({'__module__': 'sasdata.data_util.manipulations', '__doc__': '\n    Defines a ring on a 2D data set.\n    The ring is defined by r_min, r_max, and\n    the position of the center of the ring.\n\n    The data returned is the distribution of counts\n    around the ring as a function of phi.\n\n    Phi_min and phi_max should be defined between 0 and 2*pi\n    in anti-clockwise starting from the x- axis on the left-hand side\n    ', '__init__': <function Ring.__init__>, '__call__': <function Ring.__call__>, '__dict__': <attribute '__dict__' of 'Ring' objects>, '__weakref__': <attribute '__weakref__' of 'Ring' objects>, '__annotations__': {}})
__doc__ = '\n    Defines a ring on a 2D data set.\n    The ring is defined by r_min, r_max, and\n    the position of the center of the ring.\n\n    The data returned is the distribution of counts\n    around the ring as a function of phi.\n\n    Phi_min and phi_max should be defined between 0 and 2*pi\n    in anti-clockwise starting from the x- axis on the left-hand side\n    '
__init__(r_min=0, r_max=0, center_x=0, center_y=0, nbins=36)
__module__ = 'sasdata.data_util.manipulations'
__weakref__

list of weak references to the object

class sasdata.data_util.manipulations.Ringcut(r_min=0, r_max=0, center_x=0, center_y=0)

Bases: object

Defines a ring on a 2D data set. The ring is defined by r_min, r_max, and the position of the center of the ring.

The data returned is the region inside the ring

Phi_min and phi_max should be defined between 0 and 2*pi in anti-clockwise starting from the x- axis on the left-hand side

__call__(data2D)

Apply the ring to the data set. Returns the angular distribution for a given q range

Parameters:

data2D – Data2D object

Returns:

index array in the range

__dict__ = mappingproxy({'__module__': 'sasdata.data_util.manipulations', '__doc__': '\n    Defines a ring on a 2D data set.\n    The ring is defined by r_min, r_max, and\n    the position of the center of the ring.\n\n    The data returned is the region inside the ring\n\n    Phi_min and phi_max should be defined between 0 and 2*pi\n    in anti-clockwise starting from the x- axis on the left-hand side\n    ', '__init__': <function Ringcut.__init__>, '__call__': <function Ringcut.__call__>, '__dict__': <attribute '__dict__' of 'Ringcut' objects>, '__weakref__': <attribute '__weakref__' of 'Ringcut' objects>, '__annotations__': {}})
__doc__ = '\n    Defines a ring on a 2D data set.\n    The ring is defined by r_min, r_max, and\n    the position of the center of the ring.\n\n    The data returned is the region inside the ring\n\n    Phi_min and phi_max should be defined between 0 and 2*pi\n    in anti-clockwise starting from the x- axis on the left-hand side\n    '
__init__(r_min=0, r_max=0, center_x=0, center_y=0)
__module__ = 'sasdata.data_util.manipulations'
__weakref__

list of weak references to the object

class sasdata.data_util.manipulations.SectorPhi(r_min, r_max, phi_min=0, phi_max=6.283185307179586, nbins=20, base=None)

Bases: _Sector

Sector average as a function of phi. I(phi) is return and the data is averaged over Q.

A sector is defined by r_min, r_max, phi_min, phi_max. The number of bin in phi also has to be defined.

__call__(data2D)

Perform sector average and return I(phi).

Parameters:

data2D – Data2D object

Returns:

Data1D object

__doc__ = '\n    Sector average as a function of phi.\n    I(phi) is return and the data is averaged over Q.\n\n    A sector is defined by r_min, r_max, phi_min, phi_max.\n    The number of bin in phi also has to be defined.\n    '
__module__ = 'sasdata.data_util.manipulations'
class sasdata.data_util.manipulations.SectorQ(r_min, r_max, phi_min=0, phi_max=6.283185307179586, nbins=20, base=None)

Bases: _Sector

Sector average as a function of Q for both wings. setting the _Sector.fold attribute determines whether or not the two sectors are averaged together (folded over) or separate. In the case of separate (not folded), the qs for the “minor wing” are arbitrarily set to a negative value. I(Q) is returned and the data is averaged over phi.

A sector is defined by r_min, r_max, phi_min, phi_max. where r_min, r_max, phi_min, phi_max >0. The number of bin in Q also has to be defined.

__annotations__ = {}
__call__(data2D)

Perform sector average and return I(Q).

Parameters:

data2D – Data2D object

Returns:

Data1D object

__doc__ = '\n    Sector average as a function of Q for both wings. setting the _Sector.fold\n    attribute determines whether or not the two sectors are averaged together\n    (folded over) or separate.  In the case of separate (not folded), the\n    qs for the "minor wing" are arbitrarily set to a negative value.\n    I(Q) is returned and the data is averaged over phi.\n\n    A sector is defined by r_min, r_max, phi_min, phi_max.\n    where r_min, r_max, phi_min, phi_max >0.\n    The number of bin in Q also has to be defined.\n    '
__module__ = 'sasdata.data_util.manipulations'
class sasdata.data_util.manipulations.Sectorcut(phi_min=0, phi_max=3.141592653589793)

Bases: object

Defines a sector (major + minor) region on a 2D data set. The sector is defined by phi_min, phi_max, where phi_min and phi_max are defined by the right and left lines wrt central line.

Phi_min and phi_max are given in units of radian and (phi_max-phi_min) should not be larger than pi

__call__(data2D)

Find a rectangular 2D region of interest.

Parameters:

data2D – Data2D object

Returns:

mask, 1d array (len = len(data))

with Trues where the data points are inside ROI, otherwise False

__dict__ = mappingproxy({'__module__': 'sasdata.data_util.manipulations', '__doc__': '\n    Defines a sector (major + minor) region on a 2D data set.\n    The sector is defined by phi_min, phi_max,\n    where phi_min and phi_max are defined by the right\n    and left lines wrt central line.\n\n    Phi_min and phi_max are given in units of radian\n    and (phi_max-phi_min) should not be larger than pi\n    ', '__init__': <function Sectorcut.__init__>, '__call__': <function Sectorcut.__call__>, '_find': <function Sectorcut._find>, '__dict__': <attribute '__dict__' of 'Sectorcut' objects>, '__weakref__': <attribute '__weakref__' of 'Sectorcut' objects>, '__annotations__': {}})
__doc__ = '\n    Defines a sector (major + minor) region on a 2D data set.\n    The sector is defined by phi_min, phi_max,\n    where phi_min and phi_max are defined by the right\n    and left lines wrt central line.\n\n    Phi_min and phi_max are given in units of radian\n    and (phi_max-phi_min) should not be larger than pi\n    '
__init__(phi_min=0, phi_max=3.141592653589793)
__module__ = 'sasdata.data_util.manipulations'
__weakref__

list of weak references to the object

_find(data2D)

Find a rectangular 2D region of interest.

Parameters:

data2D – Data2D object

Returns:

out, 1d array (length = len(data))

with Trues where the data points are inside ROI, otherwise Falses

class sasdata.data_util.manipulations.SlabX(x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0, bin_width=0.001, fold=False)

Bases: _Slab

Compute average I(Qx) for a region of interest

__call__(data2D)

Compute average I(Qx) for a region of interest :param data2D: Data2D object :return: Data1D object

__doc__ = '\n    Compute average I(Qx) for a region of interest\n    '
__module__ = 'sasdata.data_util.manipulations'
class sasdata.data_util.manipulations.SlabY(x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0, bin_width=0.001, fold=False)

Bases: _Slab

Compute average I(Qy) for a region of interest

__annotations__ = {}
__call__(data2D)

Compute average I(Qy) for a region of interest

Parameters:

data2D – Data2D object

Returns:

Data1D object

__doc__ = '\n    Compute average I(Qy) for a region of interest\n    '
__module__ = 'sasdata.data_util.manipulations'
class sasdata.data_util.manipulations._Sector(r_min, r_max, phi_min=0, phi_max=6.283185307179586, nbins=20, base=None)

Bases: object

Defines a sector region on a 2D data set. The sector is defined by r_min, r_max, phi_min and phi_max. phi_min and phi_max are defined by the right and left lines wrt a central line such that phi_max could be less than phi_min if they straddle the discontinuity from 2pi to 0.

Phi is defined between 0 and 2*pi in anti-clockwise starting from the negative x-axis.

__annotations__ = {}
__dict__ = mappingproxy({'__module__': 'sasdata.data_util.manipulations', '__doc__': '\n    Defines a sector region on a 2D data set.\n    The sector is defined by r_min, r_max, phi_min and phi_max.\n    phi_min and phi_max are defined by the right and left lines wrt a central\n    line such that phi_max could be less than phi_min if they straddle the\n    discontinuity from 2pi to 0.\n\n    Phi is defined between 0 and 2*pi in anti-clockwise\n    starting from the negative x-axis.\n    ', '__init__': <function _Sector.__init__>, '_agv': <function _Sector._agv>, '__dict__': <attribute '__dict__' of '_Sector' objects>, '__weakref__': <attribute '__weakref__' of '_Sector' objects>, '__annotations__': {}})
__doc__ = '\n    Defines a sector region on a 2D data set.\n    The sector is defined by r_min, r_max, phi_min and phi_max.\n    phi_min and phi_max are defined by the right and left lines wrt a central\n    line such that phi_max could be less than phi_min if they straddle the\n    discontinuity from 2pi to 0.\n\n    Phi is defined between 0 and 2*pi in anti-clockwise\n    starting from the negative x-axis.\n    '
__init__(r_min, r_max, phi_min=0, phi_max=6.283185307179586, nbins=20, base=None)
Parameters:

base – must be a valid base for an algorithm, i.e.,

a positive number

__module__ = 'sasdata.data_util.manipulations'
__weakref__

list of weak references to the object

_agv(data2D, run='phi')

Perform sector averaging.

Parameters:
  • data2D – Data2D object

  • run – define the varying parameter (‘phi’ , or ‘sector’)

Returns:

Data1D object

class sasdata.data_util.manipulations._Slab(x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0, bin_width=0.001, fold=False)

Bases: object

Compute average I(Q) for a region of interest

__annotations__ = {}
__call__(data2D)

Call self as a function.

__dict__ = mappingproxy({'__module__': 'sasdata.data_util.manipulations', '__doc__': '\n    Compute average I(Q) for a region of interest\n    ', '__init__': <function _Slab.__init__>, '__call__': <function _Slab.__call__>, '_avg': <function _Slab._avg>, '__dict__': <attribute '__dict__' of '_Slab' objects>, '__weakref__': <attribute '__weakref__' of '_Slab' objects>, '__annotations__': {}})
__doc__ = '\n    Compute average I(Q) for a region of interest\n    '
__init__(x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0, bin_width=0.001, fold=False)
__module__ = 'sasdata.data_util.manipulations'
__weakref__

list of weak references to the object

_avg(data2D, maj)

Compute average I(Q_maj) for a region of interest. The major axis is defined as the axis of Q_maj. The minor axis is the axis that we average over.

Parameters:
  • data2D – Data2D object

  • maj_min – min value on the major axis

Returns:

Data1D object

sasdata.data_util.manipulations.flip_phi(phi: float) float

Force phi to be within the 0 <= to <= 2pi range by adding or subtracting 2pi as necessary

Returns:

phi in >=0 and <=2Pi

sasdata.data_util.manipulations.get_dq_data(data2d: Data2D) array

Get the dq for resolution averaging The pinholes and det. pix contribution present in both direction of the 2D which must be subtracted when converting to 1D: dq_overlap should calculated ideally at q = 0. Note This method works on only pinhole geometry. Extrapolate dqx(r) and dqy(phi) at q = 0, and take an average.

sasdata.data_util.manipulations.get_intercept(q: float, q_0: float, q_1: float) float | None

Returns the fraction of the side at which the q-value intercept the pixel, None otherwise. The values returned is the fraction ON THE SIDE OF THE LOWEST Q.

    A           B
+-----------+--------+    <--- pixel size
0                    1
Q_0 -------- Q ----- Q_1   <--- equivalent Q range
if Q_1 > Q_0, A is returned
if Q_1 < Q_0, B is returned
if Q is outside the range of [Q_0, Q_1], None is returned
sasdata.data_util.manipulations.get_pixel_fraction(q_max: float, q_00: float, q_01: float, q_10: float, q_11: float) float

Returns the fraction of the pixel defined by the four corners (q_00, q_01, q_10, q_11) that has q < q_max.:

        q_01                q_11
y=1         +--------------+
            |              |
            |              |
            |              |
y=0         +--------------+
        q_00                q_10

            x=0            x=1
sasdata.data_util.manipulations.get_pixel_fraction_square(x: float, x_min: float, x_max: float) float

Return the fraction of the length from xmin to x.:

    A            B
+-----------+---------+
xmin        x         xmax
Parameters:
  • x – x-value

  • x_min – minimum x for the length considered

  • x_max – minimum x for the length considered

Returns:

(x-xmin)/(xmax-xmin) when xmin < x < xmax

sasdata.data_util.manipulations.get_q_compo(dx: float, dy: float, detector_distance: float, wavelength: float, compo: str | None = None) float

This reduces tiny error at very large q. Implementation of this func is not started yet.<–ToDo

sasdata.data_util.manipulations.position_and_wavelength_to_q(dx: float, dy: float, detector_distance: float, wavelength: float) float
Parameters:
  • dx – x-distance from beam center [mm]

  • dy – y-distance from beam center [mm]

  • detector_distance – sample to detector distance [mm]

  • wavelength – neutron wavelength [nm]

Returns:

q-value at the given position

sasdata.data_util.manipulations.reader2D_converter(data2d: Data2D | None = None) Data2D

convert old 2d format opened by IhorReader or danse_reader to new Data2D format This is mainly used by the Readers

Parameters:

data2d – 2d array of Data2D object

Returns:

1d arrays of Data2D object

sasdata.data_util.nxsunit module

Define unit conversion support for NeXus style units.

The unit format is somewhat complicated. There are variant spellings and incorrect capitalization to worry about, as well as forms such as “mili*metre” and “1e-7 seconds”.

This is a minimal implementation of units including only what I happen to need now. It does not support the complete dimensional analysis provided by the package udunits on which NeXus is based, or even the units used in the NeXus definition files.

Unlike other units packages, this package does not carry the units along with the value but merely provides a conversion function for transforming values.

Usage example:

import nxsunit
u = nxsunit.Converter('mili*metre')  # Units stored in mm
v = u(3000,'m')  # Convert the value 3000 mm into meters

NeXus example:

# Load sample orientation in radians regardless of how it is stored.
# 1. Open the path
file.openpath('/entry1/sample/sample_orientation')
# 2. scan the attributes, retrieving 'units'
units = [for attr,value in file.attrs() if attr == 'units']
# 3. set up the converter (assumes that units actually exists)
u = nxsunit.Converter(units[0])
# 4. read the data and convert to the correct units
v = u(file.read(),'radians')

This is a standalone module, not relying on either DANSE or NeXus, and can be used for other unit conversion tasks.

Note: minutes are used for angle and seconds are used for time. We cannot tell what the correct interpretation is without knowing something about the fields themselves. If this becomes an issue, we will need to allow the application to set the dimension for the unit rather than inferring the dimension from an example unit.

class sasdata.data_util.nxsunit.Converter(units: str | None = None, dimension: List[str] | None = None)

Bases: object

Unit converter for NeXus style units.

The converter is initialized with the units of the source value. Various source values can then be converted to target values based on target value name.

__call__(value: T, units: str | None = '') List[float] | T

Call self as a function.

__dict__ = mappingproxy({'__module__': 'sasdata.data_util.nxsunit', '__doc__': '\n    Unit converter for NeXus style units.\n\n    The converter is initialized with the units of the source value.  Various\n    source values can then be converted to target values based on target\n    value name.\n    ', '_units': None, 'dimension': None, 'scalemap': None, 'scalebase': None, 'scaleoffset': None, 'units': <property object>, '__init__': <function Converter.__init__>, 'scale': <function Converter.scale>, '_scale_with_offset': <function Converter._scale_with_offset>, '_get_scale_for_units': <function Converter._get_scale_for_units>, 'get_compatible_units': <function Converter.get_compatible_units>, '__call__': <function Converter.__call__>, '__dict__': <attribute '__dict__' of 'Converter' objects>, '__weakref__': <attribute '__weakref__' of 'Converter' objects>, '__annotations__': {'_units': 'List[str]', 'dimension': 'List[str]', 'scalemap': 'List[Dict[str, ConversionType]]', 'scalebase': 'float', 'scaleoffset': 'float', 'units': 'str'}})
__doc__ = '\n    Unit converter for NeXus style units.\n\n    The converter is initialized with the units of the source value.  Various\n    source values can then be converted to target values based on target\n    value name.\n    '
__init__(units: str | None = None, dimension: List[str] | None = None)
__module__ = 'sasdata.data_util.nxsunit'
__weakref__

list of weak references to the object

_get_scale_for_units(units: List[str])

Protected method to get scale factor and scale offset as a combined value

_scale_with_offset(value: float, scale_base: Tuple[float, float]) float

Scale the given value and add the offset using the units string supplied

_units: List[str] = None

Name of the source units (km, Ang, us, …)

dimension: List[str] = None

Type of the source units (distance, time, frequency, …)

get_compatible_units() List[str]

Return a list of compatible units for the current Convertor object

scale(units: str = '', value: T = None) List[float] | T

Scale the given value using the units string supplied

scalebase: float = None

Scale base for the source units

scalemap: List[Dict[str, float | Tuple[float, float]]] = None

Scale converter, mapping unit name to scale factor or (scale, offset) for temperature units.

scaleoffset: float = None
property units: str
class sasdata.data_util.nxsunit.TypeVar(name, *constraints, bound=None, covariant=False, contravariant=False)

Bases: _Final, _Immutable, _BoundVarianceMixin, _PickleUsingNameMixin

Type variable.

Usage:

T = TypeVar('T')  # Can be anything
A = TypeVar('A', str, bytes)  # Must be str or bytes

Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function definitions. See class Generic for more information on generic types. Generic functions work as follows:

def repeat(x: T, n: int) -> List[T]:

‘’’Return a list containing n references to x.’’’ return [x]*n

def longest(x: A, y: A) -> A:

‘’’Return the longest of two strings.’’’ return x if len(x) >= len(y) else y

The latter example’s signature is essentially the overloading of (str, str) -> str and (bytes, bytes) -> bytes. Also note that if the arguments are instances of some subclass of str, the return type is still plain str.

At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError.

Type variables defined with covariant=True or contravariant=True can be used to declare covariant or contravariant generic types. See PEP 484 for more details. By default generic types are invariant in all type variables.

Type variables can be introspected. e.g.:

T.__name__ == ‘T’ T.__constraints__ == () T.__covariant__ == False T.__contravariant__ = False A.__constraints__ == (str, bytes)

Note that only type variables defined in global scope can be pickled.

__dict__ = mappingproxy({'__module__': 'typing', '__doc__': "Type variable.\n\n    Usage::\n\n      T = TypeVar('T')  # Can be anything\n      A = TypeVar('A', str, bytes)  # Must be str or bytes\n\n    Type variables exist primarily for the benefit of static type\n    checkers.  They serve as the parameters for generic types as well\n    as for generic function definitions.  See class Generic for more\n    information on generic types.  Generic functions work as follows:\n\n      def repeat(x: T, n: int) -> List[T]:\n          '''Return a list containing n references to x.'''\n          return [x]*n\n\n      def longest(x: A, y: A) -> A:\n          '''Return the longest of two strings.'''\n          return x if len(x) >= len(y) else y\n\n    The latter example's signature is essentially the overloading\n    of (str, str) -> str and (bytes, bytes) -> bytes.  Also note\n    that if the arguments are instances of some subclass of str,\n    the return type is still plain str.\n\n    At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError.\n\n    Type variables defined with covariant=True or contravariant=True\n    can be used to declare covariant or contravariant generic types.\n    See PEP 484 for more details. By default generic types are invariant\n    in all type variables.\n\n    Type variables can be introspected. e.g.:\n\n      T.__name__ == 'T'\n      T.__constraints__ == ()\n      T.__covariant__ == False\n      T.__contravariant__ = False\n      A.__constraints__ == (str, bytes)\n\n    Note that only type variables defined in global scope can be pickled.\n    ", '__init__': <function TypeVar.__init__>, '__typing_subst__': <function TypeVar.__typing_subst__>, '__dict__': <attribute '__dict__' of 'TypeVar' objects>, '__annotations__': {}})
__doc__ = "Type variable.\n\n    Usage::\n\n      T = TypeVar('T')  # Can be anything\n      A = TypeVar('A', str, bytes)  # Must be str or bytes\n\n    Type variables exist primarily for the benefit of static type\n    checkers.  They serve as the parameters for generic types as well\n    as for generic function definitions.  See class Generic for more\n    information on generic types.  Generic functions work as follows:\n\n      def repeat(x: T, n: int) -> List[T]:\n          '''Return a list containing n references to x.'''\n          return [x]*n\n\n      def longest(x: A, y: A) -> A:\n          '''Return the longest of two strings.'''\n          return x if len(x) >= len(y) else y\n\n    The latter example's signature is essentially the overloading\n    of (str, str) -> str and (bytes, bytes) -> bytes.  Also note\n    that if the arguments are instances of some subclass of str,\n    the return type is still plain str.\n\n    At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError.\n\n    Type variables defined with covariant=True or contravariant=True\n    can be used to declare covariant or contravariant generic types.\n    See PEP 484 for more details. By default generic types are invariant\n    in all type variables.\n\n    Type variables can be introspected. e.g.:\n\n      T.__name__ == 'T'\n      T.__constraints__ == ()\n      T.__covariant__ == False\n      T.__contravariant__ = False\n      A.__constraints__ == (str, bytes)\n\n    Note that only type variables defined in global scope can be pickled.\n    "
__init__(name, *constraints, bound=None, covariant=False, contravariant=False)
__module__ = 'typing'
__typing_subst__(arg)
__weakref__
sasdata.data_util.nxsunit._build_all_units()

Fill in the global variables DIMENSIONS and AMBIGUITIES for all available dimensions.

sasdata.data_util.nxsunit._build_degree_units(name: str, symbol: str, conversion: float | Tuple[float, float]) Dict[str, float | Tuple[float, float]]

Builds variations on the temperature unit name, including the degree symbol or the word degree.

sasdata.data_util.nxsunit._build_inv_n_metric_units(unit: str, abbr: str, n: int = 2) Dict[str, float | Tuple[float, float]]

Using the return from _build_metric_units, build inverse to the nth power variations on all units (1/x^n, invx^n, x^{-n} and x^-n)

sasdata.data_util.nxsunit._build_inv_n_units(names: Sequence[str], conversion: float | Tuple[float, float], n: int = 2) Dict[str, float | Tuple[float, float]]

Builds variations on inverse x to the nth power units, including 1/x^n, invx^n, x^-n and x^{-n}.

sasdata.data_util.nxsunit._build_metric_units(unit: str, abbr: str) Dict[str, float]

Construct standard SI names for the given unit. Builds e.g.,

s, ns, n*s, n_s second, nanosecond, nano*second, nano_second seconds, nanoseconds, nano*seconds, nano_seconds

Includes prefixes for femto through peta.

Ack! Allows, e.g., Coulomb and coulomb even though Coulomb is not a unit because some NeXus files store it that way!

Returns a dictionary of names and scales.

sasdata.data_util.nxsunit._build_plural_units(**kw: Dict[str, float | Tuple[float, float]]) Dict[str, float | Tuple[float, float]]

Construct names for the given units. Builds singular and plural form.

sasdata.data_util.nxsunit._format_unit_structure(unit: str | None = None) List[str]

Format units a common way :param unit: Unit string to be formatted :return: Formatted unit string

sasdata.data_util.nxsunit.standardize_units(unit: str | None) List[str]

Convert supplied units to a standard format for maintainability :param unit: Raw unit as supplied :return: Unit with known, reduced values

sasdata.data_util.registry module

File extension registry.

This provides routines for opening files based on extension, and registers the built-in file extensions.

class sasdata.data_util.registry.CustomFileOpen(filename, mode='rb')

Bases: object

Custom context manager to fetch file contents depending on where the file is located.

__dict__ = mappingproxy({'__module__': 'sasdata.data_util.registry', '__doc__': 'Custom context manager to fetch file contents depending on where the file is located.', '__init__': <function CustomFileOpen.__init__>, '__enter__': <function CustomFileOpen.__enter__>, '__exit__': <function CustomFileOpen.__exit__>, '__dict__': <attribute '__dict__' of 'CustomFileOpen' objects>, '__weakref__': <attribute '__weakref__' of 'CustomFileOpen' objects>, '__annotations__': {}})
__doc__ = 'Custom context manager to fetch file contents depending on where the file is located.'
__enter__()

A context method that either fetches a file from a URL or opens a local file.

__exit__(exc_type, exc_val, exc_tb)

Close all open file handles when exiting the context manager.

__init__(filename, mode='rb')
__module__ = 'sasdata.data_util.registry'
__weakref__

list of weak references to the object

class sasdata.data_util.registry.ExtensionRegistry

Bases: object

Associate a file loader with an extension.

Note that there may be multiple loaders for the same extension.

Example:

registry = ExtensionRegistry()

# Add an association by setting an element
registry['.zip'] = unzip

# Multiple extensions for one loader
registry['.tgz'] = untar
registry['.tar.gz'] = untar

# Generic extensions to use after trying more specific extensions;
# these will be checked after the more specific extensions fail.
registry['.gz'] = gunzip

# Multiple loaders for one extension
registry['.cx'] = cx1
registry['.cx'] = cx2
registry['.cx'] = cx3

# Show registered extensions
print registry.extensions()

# Can also register a format name for explicit control from caller
registry['cx3'] = cx3
print registry.formats()

# Retrieve loaders for a file name
registry.lookup('hello.cx') -> [cx3,cx2,cx1]

# Run loader on a filename
registry.load('hello.cx') ->
    try:
        return cx3('hello.cx')
    except:
        try:
            return cx2('hello.cx')
        except:
            return cx1('hello.cx')

# Load in a specific format ignoring extension
registry.load('hello.cx',format='cx3') ->
    return cx3('hello.cx')
__contains__(ext: str) bool
__dict__ = mappingproxy({'__module__': 'sasdata.data_util.registry', '__doc__': "\n    Associate a file loader with an extension.\n\n    Note that there may be multiple loaders for the same extension.\n\n    Example: ::\n\n        registry = ExtensionRegistry()\n\n        # Add an association by setting an element\n        registry['.zip'] = unzip\n\n        # Multiple extensions for one loader\n        registry['.tgz'] = untar\n        registry['.tar.gz'] = untar\n\n        # Generic extensions to use after trying more specific extensions;\n        # these will be checked after the more specific extensions fail.\n        registry['.gz'] = gunzip\n\n        # Multiple loaders for one extension\n        registry['.cx'] = cx1\n        registry['.cx'] = cx2\n        registry['.cx'] = cx3\n\n        # Show registered extensions\n        print registry.extensions()\n\n        # Can also register a format name for explicit control from caller\n        registry['cx3'] = cx3\n        print registry.formats()\n\n        # Retrieve loaders for a file name\n        registry.lookup('hello.cx') -> [cx3,cx2,cx1]\n\n        # Run loader on a filename\n        registry.load('hello.cx') ->\n            try:\n                return cx3('hello.cx')\n            except:\n                try:\n                    return cx2('hello.cx')\n                except:\n                    return cx1('hello.cx')\n\n        # Load in a specific format ignoring extension\n        registry.load('hello.cx',format='cx3') ->\n            return cx3('hello.cx')\n    ", '__init__': <function ExtensionRegistry.__init__>, '__setitem__': <function ExtensionRegistry.__setitem__>, '__getitem__': <function ExtensionRegistry.__getitem__>, '__contains__': <function ExtensionRegistry.__contains__>, 'formats': <function ExtensionRegistry.formats>, 'extensions': <function ExtensionRegistry.extensions>, 'lookup': <function ExtensionRegistry.lookup>, 'load': <function ExtensionRegistry.load>, '__dict__': <attribute '__dict__' of 'ExtensionRegistry' objects>, '__weakref__': <attribute '__weakref__' of 'ExtensionRegistry' objects>, '__annotations__': {}})
__doc__ = "\n    Associate a file loader with an extension.\n\n    Note that there may be multiple loaders for the same extension.\n\n    Example: ::\n\n        registry = ExtensionRegistry()\n\n        # Add an association by setting an element\n        registry['.zip'] = unzip\n\n        # Multiple extensions for one loader\n        registry['.tgz'] = untar\n        registry['.tar.gz'] = untar\n\n        # Generic extensions to use after trying more specific extensions;\n        # these will be checked after the more specific extensions fail.\n        registry['.gz'] = gunzip\n\n        # Multiple loaders for one extension\n        registry['.cx'] = cx1\n        registry['.cx'] = cx2\n        registry['.cx'] = cx3\n\n        # Show registered extensions\n        print registry.extensions()\n\n        # Can also register a format name for explicit control from caller\n        registry['cx3'] = cx3\n        print registry.formats()\n\n        # Retrieve loaders for a file name\n        registry.lookup('hello.cx') -> [cx3,cx2,cx1]\n\n        # Run loader on a filename\n        registry.load('hello.cx') ->\n            try:\n                return cx3('hello.cx')\n            except:\n                try:\n                    return cx2('hello.cx')\n                except:\n                    return cx1('hello.cx')\n\n        # Load in a specific format ignoring extension\n        registry.load('hello.cx',format='cx3') ->\n            return cx3('hello.cx')\n    "
__getitem__(ext: str) List
__init__()
__module__ = 'sasdata.data_util.registry'
__setitem__(ext: str, loader)
__weakref__

list of weak references to the object

extensions() List[str]

Return a sorted list of registered extensions.

formats() List[str]

Return a sorted list of the registered formats.

load(path: str, ext: str | None = None) List[Data1D | Data2D]

Call the loader for a single file.

Exceptions are stored in Data1D instances, with the errors in Data1D.errors

lookup(path: str) List[callable]

Return the loader associated with the file type of path.

Parameters:

path – Data file path

Returns:

List of available readers for the file extension (maybe empty)

sasdata.data_util.registry.create_empty_data_with_errors(path: str | Path, errors: List[Exception])

Create a Data1D instance that only holds errors and a filepath. This allows all file paths to return a common data type, regardless if the data loading was successful or a failure.

sasdata.data_util.uncertainty module

Uncertainty propagation class for arithmetic, log and exp.

Based on scalars or numpy vectors, this class allows you to store and manipulate values+uncertainties, with propagation of gaussian error for addition, subtraction, multiplication, division, power, exp and log.

Storage properties are determined by the numbers used to set the value and uncertainty. Be sure to use floating point uncertainty vectors for inplace operations since numpy does not do automatic type conversion. Normal operations can use mixed integer and floating point. In place operations such as a *= b create at most one extra copy for each operation. By contrast, c = a*b uses four intermediate vectors, so shouldn’t be used for huge arrays.

class sasdata.data_util.uncertainty.Uncertainty(x, variance=None)

Bases: object

__abs__()
__add__(other)
__and__(other)
__coerce__()
__complex__()
__delitem__(key)
__dict__ = mappingproxy({'__module__': 'sasdata.data_util.uncertainty', '_getdx': <function Uncertainty._getdx>, '_setdx': <function Uncertainty._setdx>, 'dx': <property object>, '__init__': <function Uncertainty.__init__>, '__len__': <function Uncertainty.__len__>, '__getitem__': <function Uncertainty.__getitem__>, '__setitem__': <function Uncertainty.__setitem__>, '__delitem__': <function Uncertainty.__delitem__>, '__add__': <function Uncertainty.__add__>, '__sub__': <function Uncertainty.__sub__>, '__mul__': <function Uncertainty.__mul__>, '__truediv__': <function Uncertainty.__truediv__>, '__pow__': <function Uncertainty.__pow__>, '__radd__': <function Uncertainty.__radd__>, '__rsub__': <function Uncertainty.__rsub__>, '__rmul__': <function Uncertainty.__rmul__>, '__rtruediv__': <function Uncertainty.__rtruediv__>, '__rpow__': <function Uncertainty.__rpow__>, '__iadd__': <function Uncertainty.__iadd__>, '__isub__': <function Uncertainty.__isub__>, '__imul__': <function Uncertainty.__imul__>, '__itruediv__': <function Uncertainty.__itruediv__>, '__ipow__': <function Uncertainty.__ipow__>, '__div__': <function Uncertainty.__div__>, '__rdiv__': <function Uncertainty.__rdiv__>, '__idiv__': <function Uncertainty.__idiv__>, '__neg__': <function Uncertainty.__neg__>, '__pos__': <function Uncertainty.__pos__>, '__abs__': <function Uncertainty.__abs__>, '__str__': <function Uncertainty.__str__>, '__repr__': <function Uncertainty.__repr__>, '__floordiv__': <function Uncertainty.__floordiv__>, '__mod__': <function Uncertainty.__mod__>, '__divmod__': <function Uncertainty.__divmod__>, '__lshift__': <function Uncertainty.__lshift__>, '__rshift__': <function Uncertainty.__rshift__>, '__and__': <function Uncertainty.__and__>, '__xor__': <function Uncertainty.__xor__>, '__or__': <function Uncertainty.__or__>, '__rfloordiv__': <function Uncertainty.__rfloordiv__>, '__rmod__': <function Uncertainty.__rmod__>, '__rdivmod__': <function Uncertainty.__rdivmod__>, '__rlshift__': <function Uncertainty.__rlshift__>, '__rrshift__': <function Uncertainty.__rrshift__>, '__rand__': <function Uncertainty.__rand__>, '__rxor__': <function Uncertainty.__rxor__>, '__ror__': <function Uncertainty.__ror__>, '__ifloordiv__': <function Uncertainty.__ifloordiv__>, '__imod__': <function Uncertainty.__imod__>, '__idivmod__': <function Uncertainty.__idivmod__>, '__ilshift__': <function Uncertainty.__ilshift__>, '__irshift__': <function Uncertainty.__irshift__>, '__iand__': <function Uncertainty.__iand__>, '__ixor__': <function Uncertainty.__ixor__>, '__ior__': <function Uncertainty.__ior__>, '__invert__': <function Uncertainty.__invert__>, '__complex__': <function Uncertainty.__complex__>, '__int__': <function Uncertainty.__int__>, '__long__': <function Uncertainty.__long__>, '__float__': <function Uncertainty.__float__>, '__oct__': <function Uncertainty.__oct__>, '__hex__': <function Uncertainty.__hex__>, '__index__': <function Uncertainty.__index__>, '__coerce__': <function Uncertainty.__coerce__>, 'log': <function Uncertainty.log>, 'exp': <function Uncertainty.exp>, '__dict__': <attribute '__dict__' of 'Uncertainty' objects>, '__weakref__': <attribute '__weakref__' of 'Uncertainty' objects>, '__doc__': None, '__annotations__': {}})
__div__(other)
__divmod__(other)
__doc__ = None
__float__()
__floordiv__(other)
__getitem__(key)
__hex__()
__iadd__(other)
__iand__(other)
__idiv__(other)
__idivmod__(other)
__ifloordiv__(other)
__ilshift__(other)
__imod__(other)
__imul__(other)
__index__()
__init__(x, variance=None)
__int__()
__invert__()
__ior__(other)
__ipow__(other)
__irshift__(other)
__isub__(other)
__itruediv__(other)
__ixor__(other)
__len__()
__long__()
__lshift__(other)
__mod__(other)
__module__ = 'sasdata.data_util.uncertainty'
__mul__(other)
__neg__()
__oct__()
__or__(other)

Return self|value.

__pos__()
__pow__(other)
__radd__(other)
__rand__(other)
__rdiv__(other)
__rdivmod__(other)
__repr__()

Return repr(self).

__rfloordiv__(other)
__rlshift__(other)
__rmod__(other)
__rmul__(other)
__ror__(other)

Return value|self.

__rpow__(other)
__rrshift__(other)
__rshift__(other)
__rsub__(other)
__rtruediv__(other)
__rxor__(other)
__setitem__(key, value)
__str__()

Return str(self).

__sub__(other)
__truediv__(other)
__weakref__

list of weak references to the object

__xor__(other)
_getdx()
_setdx(dx)
property dx

standard deviation

exp()
log()
sasdata.data_util.uncertainty.exp(val)
sasdata.data_util.uncertainty.log(val)
sasdata.data_util.uncertainty.test()

sasdata.data_util.util module

sasdata.data_util.util.unique_preserve_order(seq: List[Any]) List[Any]

Remove duplicates from list preserving order Fastest according to benchmarks at https://www.peterbe.com/plog/uniqifiers-benchmark

Module contents