Source code for park.simplex

#__docformat__ = "restructuredtext en"
# ******NOTICE***************
# from optimize.py module by Travis E. Oliphant
#
# You may copy and use this module as you see fit with no
# guarantee implied provided you keep this notice in all copies.
# *****END NOTICE************
#
# Modified by Paul Kienzle to support bounded minimization
"""
Downhill simplex optimizer.
"""

__all__ = ['simplex']

__docformat__ = "restructuredtext en"

import numpy
__version__="0.7"

def wrap_function(function, bounds):
    ncalls = [0]
    if bounds is not None:
        lo, hi = [numpy.asarray(v) for v in bounds]
        def function_wrapper(x):
            ncalls[0] += 1
            if numpy.any((x<lo)|(x>hi)):
                return numpy.inf
            else:
                return function(x)
    else:
        def function_wrapper(x):
            ncalls[0] += 1
            return function(x)
    return ncalls, function_wrapper

class Result:
    """
    Results from the fit.
    
    x : ndarray
        Best parameter set
    fx : float
        Best value
    iters : int
        Number of iterations
    calls : int
        Number of function calls
    success : boolean
        True if the fit completed successful, false if terminated early
        because of too many iterations.
    """
    def __init__(self, x, fx, iters, calls, status):
        self.x,self.fx,self.iters,self.calls=x,fx,iters,calls
        self.status = status
    def __str__(self):
        return "Minimum %g at %s after %d calls"%(self.fx,self.x,self.calls)

def dont_abort(): return False

[docs]def simplex(f, x0=None, bounds=None, radius=0.05, xtol=1e-4, ftol=1e-4, maxiter=None, update_handler=None, abort_test=dont_abort): """ Minimize a function using Nelder-Mead downhill simplex algorithm. This optimizer is also known as Amoeba (from Numerical Recipes) and the Nealder-Mead simplex algorithm. This is not the simplex algorithm for solving constrained linear systems. Downhill simplex is a robust derivative free algorithm for finding minima. It proceeds by choosing a set of points (the simplex) forming an n-dimensional triangle, and transforming that triangle so that the worst vertex is improved, either by stretching, shrinking or reflecting it about the center of the triangle. This algorithm is not known for its speed, but for its simplicity and robustness, and is a good algorithm to start your problem with. *Parameters*: f : callable f(x,*args) The objective function to be minimized. x0 : ndarray Initial guess. bounds : (ndarray,ndarray) or None Bounds on the parameter values for the function. radius: float Size of the initial simplex. For bounded parameters (those which have finite lower and upper bounds), radius is clipped to a value in (0,0.5] representing the portion of the range to use as the size of the initial simplex. *Returns*: Result (`park.simplex.Result`) x : ndarray Parameter that minimizes function. fx : float Value of function at minimum: ``fopt = func(xopt)``. iters : int Number of iterations performed. calls : int Number of function calls made. success : boolean True if fit completed successfully. *Other Parameters*: xtol : float Relative error in xopt acceptable for convergence. ftol : number Relative error in func(xopt) acceptable for convergence. maxiter : int=200*N Maximum number of iterations to perform. Defaults update_handler : callable Called after each iteration, as callback(xk,fxk), where xk is the current parameter vector and fxk is the function value. Returns True if the fit should continue. *Notes* Uses a Nelder-Mead simplex algorithm to find the minimum of function of one or more variables. """ fcalls, func = wrap_function(f, bounds) x0 = numpy.asfarray(x0).flatten() #print "x0",x0 N = len(x0) rank = len(x0.shape) if not -1 < rank < 2: raise ValueError, "Initial guess must be a scalar or rank-1 sequence." if maxiter is None: maxiter = N * 200 rho = 1; chi = 2; psi = 0.5; sigma = 0.5; if rank == 0: sim = numpy.zeros((N+1,), dtype=x0.dtype) else: sim = numpy.zeros((N+1,N), dtype=x0.dtype) fsim = numpy.zeros((N+1,), float) sim[0] = x0 fsim[0] = func(x0) # Metropolitan simplex: simplex has vertices at x0 and at # x0 + j*radius for each unit vector j. Radius is a percentage # change from the initial value, or just the radius if the initial # value is 0. For bounded problems, the radius is a percentage of # the bounded range in dimension j. val = x0*(1+radius) val[val == 0] = radius if bounds is not None: radius = numpy.clip(radius,0,0.5) lo,hi = [numpy.asarray(v) for v in bounds] # Keep the initial simplex inside the bounds x0[x0<lo] = lo[x0<lo] x0[x0>hi] = hi[x0>hi] bounded = ~numpy.isinf(lo) & ~numpy.isinf(hi) val[bounded] = x0[bounded] + (hi[bounded]-lo[bounded])*radius val[val<lo] = lo[val<lo] val[val>hi] = hi[val>hi] # If the initial point was at or beyond an upper bound, then bounds # projection will put x0 and x0+j*radius at the same point. We # need to detect these collisions and reverse the radius step # direction when such collisions occur. The only time the collision # can occur at the lower bound is when upper and lower bound are # identical. In that case, we are already done. collision = val==x0 if numpy.any(collision): reverse = x0*(1-radius) reverse[reverse==0] = -radius reverse[bounded] = x0[bounded] - (hi[bounded]-lo[bounded])*radius val[collision] = reverse[collision] # Make tolerance relative for bounded parameters tol = numpy.ones(x0.shape)*xtol tol[bounded] = (hi[bounded]-lo[bounded])*xtol xtol = tol # Compute values at the simplex vertices for k in range(0,N): y = x0+0 y[k] = val[k] sim[k+1] = y fsim[k+1] = func(y) #print sim ind = numpy.argsort(fsim) fsim = numpy.take(fsim,ind,0) # sort so sim[0,:] has the lowest function value sim = numpy.take(sim,ind,0) #print sim iterations = 1 while iterations < maxiter: if numpy.all(abs(sim[1:]-sim[0]) <= xtol) \ and max(abs(fsim[0]-fsim[1:])) <= ftol: #print abs(sim[1:]-sim[0]) break xbar = numpy.sum(sim[:-1],0) / N xr = (1+rho)*xbar - rho*sim[-1] #print "xbar" ,xbar,rho,sim[-1],N #break fxr = func(xr) doshrink = 0 if fxr < fsim[0]: xe = (1+rho*chi)*xbar - rho*chi*sim[-1] fxe = func(xe) if fxe < fxr: sim[-1] = xe fsim[-1] = fxe else: sim[-1] = xr fsim[-1] = fxr else: # fsim[0] <= fxr if fxr < fsim[-2]: sim[-1] = xr fsim[-1] = fxr else: # fxr >= fsim[-2] # Perform contraction if fxr < fsim[-1]: xc = (1+psi*rho)*xbar - psi*rho*sim[-1] fxc = func(xc) if fxc <= fxr: sim[-1] = xc fsim[-1] = fxc else: doshrink=1 else: # Perform an inside contraction xcc = (1-psi)*xbar + psi*sim[-1] fxcc = func(xcc) if fxcc < fsim[-1]: sim[-1] = xcc fsim[-1] = fxcc else: doshrink = 1 if doshrink: for j in xrange(1,N+1): sim[j] = sim[0] + sigma*(sim[j] - sim[0]) fsim[j] = func(sim[j]) ind = numpy.argsort(fsim) sim = numpy.take(sim,ind,0) fsim = numpy.take(fsim,ind,0) if update_handler is not None: update_handler(sim[0],fsim[0]) iterations += 1 if abort_test(): break status = 0 if iterations < maxiter else 1 res = Result(sim[0],fsim[0],iterations,fcalls[0], status) return res
def main(): import time def rosen(x): # The Rosenbrock function return numpy.sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0,axis=0) x0 = [0.8,1.2,0.7] print "Nelder-Mead Simplex" print "===================" start = time.time() x = simplex(rosen,x0) print x print "Time:",time.time() - start x0 = [0]*3 print "Nelder-Mead Simplex" print "===================" print "starting at zero" start = time.time() x = simplex(rosen,x0) print x print "Time:",time.time() - start x0 = [0.8,1.2,0.7] lo,hi = [0]*3, [1]*3 print "Bounded Nelder-Mead Simplex" print "===========================" start = time.time() x = simplex(rosen,x0,bounds=(lo,hi)) print x print "Time:",time.time() - start x0 = [0.8,1.2,0.7] lo,hi = [0.999]*3, [1.001]*3 print "Bounded Nelder-Mead Simplex" print "===========================" print "tight bounds" print "simplex is smaller than 1e-7 in every dimension, but you can't" print "see this without uncommenting the print statement simplex function" start = time.time() x = simplex(rosen,x0,bounds=(lo,hi),xtol=1e-4) print x print "Time:",time.time() - start x0 = [0]*3 hi,lo = [-0.999]*3, [-1.001]*3 print "Bounded Nelder-Mead Simplex" print "===========================" print "tight bounds, x0=0 outside bounds from above" start = time.time() x = simplex(lambda x:rosen(-x),x0,bounds=(lo,hi),xtol=1e-4) print x print "Time:",time.time() - start x0 = [0.8,1.2,0.7] lo,hi = [-numpy.inf]*3, [numpy.inf]*3 print "Bounded Nelder-Mead Simplex" print "===========================" print "infinite bounds" start = time.time() x = simplex(rosen,x0,bounds=(lo,hi),xtol=1e-4) print x print "Time:",time.time() - start if __name__ == "__main__": main()