#__docformat__ = "restructuredtext en"
# ******NOTICE***************
# from optimize.py module by Travis E. Oliphant
#
# You may copy and use this module as you see fit with no
# guarantee implied provided you keep this notice in all copies.
# *****END NOTICE************
#
# Modified by Paul Kienzle to support bounded minimization
"""
Downhill simplex optimizer.
"""
__all__ = ['simplex']
__docformat__ = "restructuredtext en"
import numpy
__version__="0.7"
def wrap_function(function, bounds):
ncalls = [0]
if bounds is not None:
lo, hi = [numpy.asarray(v) for v in bounds]
def function_wrapper(x):
ncalls[0] += 1
if numpy.any((x<lo)|(x>hi)):
return numpy.inf
else:
return function(x)
else:
def function_wrapper(x):
ncalls[0] += 1
return function(x)
return ncalls, function_wrapper
class Result:
"""
Results from the fit.
x : ndarray
Best parameter set
fx : float
Best value
iters : int
Number of iterations
calls : int
Number of function calls
success : boolean
True if the fit completed successful, false if terminated early
because of too many iterations.
"""
def __init__(self, x, fx, iters, calls, status):
self.x,self.fx,self.iters,self.calls=x,fx,iters,calls
self.status = status
def __str__(self):
return "Minimum %g at %s after %d calls"%(self.fx,self.x,self.calls)
def dont_abort(): return False
[docs]def simplex(f, x0=None, bounds=None, radius=0.05,
xtol=1e-4, ftol=1e-4, maxiter=None,
update_handler=None, abort_test=dont_abort):
"""
Minimize a function using Nelder-Mead downhill simplex algorithm.
This optimizer is also known as Amoeba (from Numerical Recipes) and
the Nealder-Mead simplex algorithm. This is not the simplex algorithm
for solving constrained linear systems.
Downhill simplex is a robust derivative free algorithm for finding
minima. It proceeds by choosing a set of points (the simplex) forming
an n-dimensional triangle, and transforming that triangle so that the
worst vertex is improved, either by stretching, shrinking or reflecting
it about the center of the triangle. This algorithm is not known for
its speed, but for its simplicity and robustness, and is a good algorithm
to start your problem with.
*Parameters*:
f : callable f(x,*args)
The objective function to be minimized.
x0 : ndarray
Initial guess.
bounds : (ndarray,ndarray) or None
Bounds on the parameter values for the function.
radius: float
Size of the initial simplex. For bounded parameters (those
which have finite lower and upper bounds), radius is clipped
to a value in (0,0.5] representing the portion of the
range to use as the size of the initial simplex.
*Returns*: Result (`park.simplex.Result`)
x : ndarray
Parameter that minimizes function.
fx : float
Value of function at minimum: ``fopt = func(xopt)``.
iters : int
Number of iterations performed.
calls : int
Number of function calls made.
success : boolean
True if fit completed successfully.
*Other Parameters*:
xtol : float
Relative error in xopt acceptable for convergence.
ftol : number
Relative error in func(xopt) acceptable for convergence.
maxiter : int=200*N
Maximum number of iterations to perform. Defaults
update_handler : callable
Called after each iteration, as callback(xk,fxk), where xk
is the current parameter vector and fxk is the function value.
Returns True if the fit should continue.
*Notes*
Uses a Nelder-Mead simplex algorithm to find the minimum of
function of one or more variables.
"""
fcalls, func = wrap_function(f, bounds)
x0 = numpy.asfarray(x0).flatten()
#print "x0",x0
N = len(x0)
rank = len(x0.shape)
if not -1 < rank < 2:
raise ValueError, "Initial guess must be a scalar or rank-1 sequence."
if maxiter is None:
maxiter = N * 200
rho = 1; chi = 2; psi = 0.5; sigma = 0.5;
if rank == 0:
sim = numpy.zeros((N+1,), dtype=x0.dtype)
else:
sim = numpy.zeros((N+1,N), dtype=x0.dtype)
fsim = numpy.zeros((N+1,), float)
sim[0] = x0
fsim[0] = func(x0)
# Metropolitan simplex: simplex has vertices at x0 and at
# x0 + j*radius for each unit vector j. Radius is a percentage
# change from the initial value, or just the radius if the initial
# value is 0. For bounded problems, the radius is a percentage of
# the bounded range in dimension j.
val = x0*(1+radius)
val[val == 0] = radius
if bounds is not None:
radius = numpy.clip(radius,0,0.5)
lo,hi = [numpy.asarray(v) for v in bounds]
# Keep the initial simplex inside the bounds
x0[x0<lo] = lo[x0<lo]
x0[x0>hi] = hi[x0>hi]
bounded = ~numpy.isinf(lo) & ~numpy.isinf(hi)
val[bounded] = x0[bounded] + (hi[bounded]-lo[bounded])*radius
val[val<lo] = lo[val<lo]
val[val>hi] = hi[val>hi]
# If the initial point was at or beyond an upper bound, then bounds
# projection will put x0 and x0+j*radius at the same point. We
# need to detect these collisions and reverse the radius step
# direction when such collisions occur. The only time the collision
# can occur at the lower bound is when upper and lower bound are
# identical. In that case, we are already done.
collision = val==x0
if numpy.any(collision):
reverse = x0*(1-radius)
reverse[reverse==0] = -radius
reverse[bounded] = x0[bounded] - (hi[bounded]-lo[bounded])*radius
val[collision] = reverse[collision]
# Make tolerance relative for bounded parameters
tol = numpy.ones(x0.shape)*xtol
tol[bounded] = (hi[bounded]-lo[bounded])*xtol
xtol = tol
# Compute values at the simplex vertices
for k in range(0,N):
y = x0+0
y[k] = val[k]
sim[k+1] = y
fsim[k+1] = func(y)
#print sim
ind = numpy.argsort(fsim)
fsim = numpy.take(fsim,ind,0)
# sort so sim[0,:] has the lowest function value
sim = numpy.take(sim,ind,0)
#print sim
iterations = 1
while iterations < maxiter:
if numpy.all(abs(sim[1:]-sim[0]) <= xtol) \
and max(abs(fsim[0]-fsim[1:])) <= ftol:
#print abs(sim[1:]-sim[0])
break
xbar = numpy.sum(sim[:-1],0) / N
xr = (1+rho)*xbar - rho*sim[-1]
#print "xbar" ,xbar,rho,sim[-1],N
#break
fxr = func(xr)
doshrink = 0
if fxr < fsim[0]:
xe = (1+rho*chi)*xbar - rho*chi*sim[-1]
fxe = func(xe)
if fxe < fxr:
sim[-1] = xe
fsim[-1] = fxe
else:
sim[-1] = xr
fsim[-1] = fxr
else: # fsim[0] <= fxr
if fxr < fsim[-2]:
sim[-1] = xr
fsim[-1] = fxr
else: # fxr >= fsim[-2]
# Perform contraction
if fxr < fsim[-1]:
xc = (1+psi*rho)*xbar - psi*rho*sim[-1]
fxc = func(xc)
if fxc <= fxr:
sim[-1] = xc
fsim[-1] = fxc
else:
doshrink=1
else:
# Perform an inside contraction
xcc = (1-psi)*xbar + psi*sim[-1]
fxcc = func(xcc)
if fxcc < fsim[-1]:
sim[-1] = xcc
fsim[-1] = fxcc
else:
doshrink = 1
if doshrink:
for j in xrange(1,N+1):
sim[j] = sim[0] + sigma*(sim[j] - sim[0])
fsim[j] = func(sim[j])
ind = numpy.argsort(fsim)
sim = numpy.take(sim,ind,0)
fsim = numpy.take(fsim,ind,0)
if update_handler is not None:
update_handler(sim[0],fsim[0])
iterations += 1
if abort_test(): break
status = 0 if iterations < maxiter else 1
res = Result(sim[0],fsim[0],iterations,fcalls[0], status)
return res
def main():
import time
def rosen(x): # The Rosenbrock function
return numpy.sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0,axis=0)
x0 = [0.8,1.2,0.7]
print "Nelder-Mead Simplex"
print "==================="
start = time.time()
x = simplex(rosen,x0)
print x
print "Time:",time.time() - start
x0 = [0]*3
print "Nelder-Mead Simplex"
print "==================="
print "starting at zero"
start = time.time()
x = simplex(rosen,x0)
print x
print "Time:",time.time() - start
x0 = [0.8,1.2,0.7]
lo,hi = [0]*3, [1]*3
print "Bounded Nelder-Mead Simplex"
print "==========================="
start = time.time()
x = simplex(rosen,x0,bounds=(lo,hi))
print x
print "Time:",time.time() - start
x0 = [0.8,1.2,0.7]
lo,hi = [0.999]*3, [1.001]*3
print "Bounded Nelder-Mead Simplex"
print "==========================="
print "tight bounds"
print "simplex is smaller than 1e-7 in every dimension, but you can't"
print "see this without uncommenting the print statement simplex function"
start = time.time()
x = simplex(rosen,x0,bounds=(lo,hi),xtol=1e-4)
print x
print "Time:",time.time() - start
x0 = [0]*3
hi,lo = [-0.999]*3, [-1.001]*3
print "Bounded Nelder-Mead Simplex"
print "==========================="
print "tight bounds, x0=0 outside bounds from above"
start = time.time()
x = simplex(lambda x:rosen(-x),x0,bounds=(lo,hi),xtol=1e-4)
print x
print "Time:",time.time() - start
x0 = [0.8,1.2,0.7]
lo,hi = [-numpy.inf]*3, [numpy.inf]*3
print "Bounded Nelder-Mead Simplex"
print "==========================="
print "infinite bounds"
start = time.time()
x = simplex(rosen,x0,bounds=(lo,hi),xtol=1e-4)
print x
print "Time:",time.time() - start
if __name__ == "__main__":
main()