Source code for sas.fit.Fitting

"""
Class Fit contains ScipyFit and ParkFit methods declaration
allows to create instance of type ScipyFit or ParkFit to perform either
a park fit or a scipy fit.
"""

#from scipy import optimize
from sas.fit.ScipyFitting import ScipyFit
from sas.fit.ParkFitting import ParkFit
from sas.fit.BumpsFitting import BumpsFit

ENGINES={
    'scipy': ScipyFit,
    'park': ParkFit,
    'bumps': BumpsFit,
}

[docs]class Fit(object): """ Wrap class that allows to select the fitting type.this class can be used as follow : :: from sas.fit.Fitting import Fit fitter= Fit() fitter.fit_engine('scipy') or fitter.fit_engine('park') engine = fitter.returnEngine() engine.set_data(data,id) engine.set_param( model,model.name, pars) engine.set_model(model,id) chisqr1, out1, cov1=engine.fit(pars,qmin,qmax) """ def __init__(self, engine='scipy', *args, **kw): """ """ #self._engine will contain an instance of ScipyFit or ParkFit self._engine = None self.fitter_id = None self.set_engine(engine, *args, **kw) def __setattr__(self, name, value): """ set fitter_id and its engine at the same time """ if name == "fitter_id": self.__dict__[name] = value if hasattr(self, "_engine") and self._engine is not None: self._engine.fitter_id = value elif name == "_engine": self.__dict__[name] = value if hasattr(self, "fitter_id") and self.fitter_id is not None: self._engine.fitter_id = self.fitter_id else: self.__dict__[name] = value
[docs] def set_engine(self, word, *args, **kw): """ Select the type of Fit :param word: the keyword to select the fit type :raise: if the user does not enter 'scipy' or 'park', a valueError is raised """ try: self._engine = ENGINES[word](*args, **kw) except KeyError, exc: raise KeyError("fit engine should be one of scipy, park or bumps")
[docs] def fit(self, msg_q=None, q=None, handler=None, curr_thread=None, ftol=1.49012e-8, reset_flag=False): """Perform the fit """ return self._engine.fit(msg_q=msg_q, q=q, handler=handler, curr_thread=curr_thread, ftol=ftol, reset_flag=reset_flag)
[docs] def set_model(self, model, id, pars=[], constraints=[], data=None): """ store a model model to fit at the position id of the fit engine """ self._engine.set_model(model, id, pars, constraints, data=data)
[docs] def set_data(self, data, id, smearer=None, qmin=None, qmax=None): """ Store data to fit at the psotion id of the fit engine :param data: data to fit :param smearer: smearerobject to smear data :param qmin: the minimum q range to fit :param qmax: the minimum q range to fit """ self._engine.set_data(data, id, smearer, qmin, qmax)
[docs] def get_model(self, id): """ return list of data""" self._engine.get_model(id)
[docs] def remove_fit_problem(self, id): """remove fitarrange in id""" self._engine.remove_fit_problem(id)
[docs] def select_problem_for_fit(self, id, value): """ select a couple of model and data at the id position in dictionary and set in self.selected value to value :param value: the value to allow fitting. can only have the value one or zero """ self._engine.select_problem_for_fit(id, value)
[docs] def get_problem_to_fit(self, id): """ return the self.selected value of the fit problem of id :param id: the id of the problem """ return self._engine.get_problem_to_fit(id)