Source code for sas.fit.ScipyFitting

"""
ScipyFitting module contains FitArrange , ScipyFit,
Parameter classes.All listed classes work together to perform a 
simple fit with scipy optimizer.
"""
import sys
import copy

import numpy 

from sas.fit.AbstractFitEngine import FitEngine
from sas.fit.AbstractFitEngine import FResult

_SMALLVALUE = 1.0e-10

[docs]class SasAssembly: """ Sas Assembly class a class wrapper to be call in optimizer.leastsq method """ def __init__(self, paramlist, model=None, data=None, fitresult=None, handler=None, curr_thread=None, msg_q=None): """ :param Model: the model wrapper fro sas -model :param Data: the data wrapper for sas data """ self.model = model self.data = data self.paramlist = paramlist self.msg_q = msg_q self.curr_thread = curr_thread self.handler = handler self.fitresult = fitresult self.res = [] self.true_res = [] self.func_name = "Functor" self.theory = None
[docs] def chisq(self): """ Calculates chi^2 :param params: list of parameter values :return: chi^2 """ total = 0 for item in self.true_res: total += item * item if len(self.true_res) == 0: return None return total / (len(self.true_res) - len(self.paramlist))
def __call__(self, params): """ Compute residuals :param params: value of parameters to fit """ #import thread self.model.set_params(self.paramlist, params) #print "params", params self.true_res, theory = self.data.residuals(self.model.eval) self.theory = copy.deepcopy(theory) # check parameters range if self.check_param_range(): # if the param value is outside of the bound # just silent return res = inf return self.res self.res = self.true_res if self.fitresult is not None: self.fitresult.set_model(model=self.model) self.fitresult.residuals = self.true_res self.fitresult.iterations += 1 self.fitresult.theory = theory #fitness = self.chisq(params=params) fitness = self.chisq() self.fitresult.pvec = params self.fitresult.set_fitness(fitness=fitness) if self.msg_q is not None: self.msg_q.put(self.fitresult) if self.handler is not None: self.handler.set_result(result=self.fitresult) self.handler.update_fit() if self.curr_thread != None: try: self.curr_thread.isquit() except: #msg = "Fitting: Terminated... Note: Forcing to stop " #msg += "fitting may cause a 'Functor error message' " #msg += "being recorded in the log file....." #self.handler.stop(msg) raise return self.res
[docs] def check_param_range(self): """ Check the lower and upper bound of the parameter value and set res to the inf if the value is outside of the range :limitation: the initial values must be within range. """ #time.sleep(0.01) is_outofbound = False # loop through the fit parameters model = self.model.model for p in self.paramlist: value = model.getParam(p) low,high = model.details[p][1:3] if low is not None and numpy.isfinite(low): if p.value == 0: # This value works on Scipy # Do not change numbers below value = _SMALLVALUE # For leastsq, it needs a bit step back from the boundary val = low - value * _SMALLVALUE if value < val: self.res *= 1e+6 is_outofbound = True break if high is not None and numpy.isfinite(high): # This value works on Scipy # Do not change numbers below if value == 0: value = _SMALLVALUE # For leastsq, it needs a bit step back from the boundary val = high + value * _SMALLVALUE if value > val: self.res *= 1e+6 is_outofbound = True break return is_outofbound
[docs]class ScipyFit(FitEngine): """ ScipyFit performs the Fit.This class can be used as follow: #Do the fit SCIPY create an engine: engine = ScipyFit() Use data must be of type plottable Use a sas model Add data with a dictionnary of FitArrangeDict where Uid is a key and data is saved in FitArrange object. engine.set_data(data,Uid) Set model parameter "M1"= model.name add {model.parameter.name:value}. :note: Set_param() if used must always preceded set_model() for the fit to be performed.In case of Scipyfit set_param is called in fit () automatically. engine.set_param( model,"M1", {'A':2,'B':4}) Add model with a dictionnary of FitArrangeDict{} where Uid is a key and model is save in FitArrange object. engine.set_model(model,Uid) engine.fit return chisqr,[model.parameter 1,2,..],[[err1....][..err2...]] chisqr1, out1, cov1=engine.fit({model.parameter.name:value},qmin,qmax) """ def __init__(self): """ Creates a dictionary (self.fit_arrange_dict={})of FitArrange elements with Uid as keys """ FitEngine.__init__(self) self.curr_thread = None #def fit(self, *args, **kw): # return profile(self._fit, *args, **kw)
[docs] def fit(self, msg_q=None, q=None, handler=None, curr_thread=None, ftol=1.49012e-8, reset_flag=False): """ """ fitproblem = [] for fproblem in self.fit_arrange_dict.itervalues(): if fproblem.get_to_fit() == 1: fitproblem.append(fproblem) if len(fitproblem) > 1 : msg = "Scipy can't fit more than a single fit problem at a time." raise RuntimeError, msg elif len(fitproblem) == 0 : raise RuntimeError, "No Assembly scheduled for Scipy fitting." model = fitproblem[0].get_model() pars = fitproblem[0].pars if reset_flag: # reset the initial value; useful for batch for name in fitproblem[0].pars: ind = fitproblem[0].pars.index(name) model.model.setParam(name, fitproblem[0].vals[ind]) listdata = [] listdata = fitproblem[0].get_data() # Concatenate dList set (contains one or more data)before fitting data = listdata self.curr_thread = curr_thread ftol = ftol # Check the initial value if it is within range _check_param_range(model.model, pars) result = FResult(model=model.model, data=data, param_list=pars) result.fitter_id = self.fitter_id if handler is not None: handler.set_result(result=result) functor = SasAssembly(paramlist=pars, model=model, data=data, handler=handler, fitresult=result, curr_thread=curr_thread, msg_q=msg_q) try: # This import must be here; otherwise it will be confused when more # than one thread exist. from scipy import optimize out, cov_x, _, mesg, success = optimize.leastsq(functor, model.get_params(pars), ftol=ftol, full_output=1) except: if hasattr(sys, 'last_type') and sys.last_type == KeyboardInterrupt: if handler is not None: msg = "Fitting: Terminated!!!" handler.stop(msg) raise KeyboardInterrupt, msg else: raise chisqr = functor.chisq() if cov_x is not None and numpy.isfinite(cov_x).all(): stderr = numpy.sqrt(numpy.diag(cov_x)) else: stderr = [] result.index = data.idx result.fitness = chisqr result.stderr = stderr result.pvec = out result.success = success result.theory = functor.theory if handler is not None: handler.set_result(result=result) handler.update_fit(last=True) if q is not None: q.put(result) return q if success < 1 or success > 5: result.fitness = None return [result]
def _check_param_range(model, pars): """ Check parameter range and set the initial value inside if it is out of range. : model: park model object """ # loop through parameterset for p in pars: value = model.getParam(p) low,high = model.details.setdefault(p,["",None,None])[1:3] # if the range was defined, check the range if low is not None and value <= low: value = low + _get_zero_shift(low) if high is not None and value > high: value = high - _get_zero_shift(high) # Check one more time if the new value goes below # the low bound, If so, re-evaluate the value # with the mean of the range. if low is not None and value < low: value = 0.5 * (low+high) model.setParam(p, value) def _get_zero_shift(limit): """ Get 10% shift of the param value = 0 based on the range value : param range: min or max value of the bounds """ return 0.1 * (limit if limit != 0.0 else 1.0) #def profile(fn, *args, **kw): # import cProfile, pstats, os # global call_result # def call(): # global call_result # call_result = fn(*args, **kw) # cProfile.runctx('call()', dict(call=call), {}, 'profile.out') # stats = pstats.Stats('profile.out') # stats.sort_stats('time') # stats.sort_stats('calls') # stats.print_stats() # os.unlink('profile.out') # return call_result