import math
import wx
#from copy import deepcopy
from BaseInteractor import _BaseInteractor
from sas.guiframe.events import NewPlotEvent
from sas.guiframe.events import StatusEvent
from sas.guiframe.events import SlicerParameterEvent
from sas.guiframe.events import EVT_SLICER_PARS
from sas.guiframe.dataFitting import Data1D
class SectorInteractor(_BaseInteractor):
[docs] """
Draw a sector slicer.Allow to performQ averaging on data 2D
"""
def __init__(self, base, axes, color='black', zorder=3):
_BaseInteractor.__init__(self, base, axes, color=color)
## Class initialization
self.markers = []
self.axes = axes
## connect the plot to event
self.connect = self.base.connect
## compute qmax limit to reset the graph
x = math.pow(max(self.base.data2D.xmax,
math.fabs(self.base.data2D.xmin)), 2)
y = math.pow(max(self.base.data2D.ymax,
math.fabs(self.base.data2D.ymin)), 2)
self.qmax = math.sqrt(x + y)
## Number of points on the plot
self.nbins = 20
## Angle of the middle line
self.theta2 = math.pi/3
## Absolute value of the Angle between the middle line and any side line
self.phi = math.pi/12
## Middle line
self.main_line = LineInteractor(self, self.base.subplot, color='blue',
zorder=zorder, r=self.qmax,
theta= self.theta2)
self.main_line.qmax = self.qmax
## Right Side line
self.right_line = SideInteractor(self, self.base.subplot, color='black',
zorder=zorder, r=self.qmax,
phi=-1*self.phi, theta2=self.theta2)
self.right_line.qmax = self.qmax
## Left Side line
self.left_line = SideInteractor(self, self.base.subplot, color='black',
zorder=zorder, r=self.qmax,
phi=self.phi, theta2=self.theta2)
self.left_line.qmax = self.qmax
## draw the sector
self.update()
self._post_data()
## Bind to slice parameter events
self.base.Bind(EVT_SLICER_PARS, self._onEVT_SLICER_PARS)
def _onEVT_SLICER_PARS(self, event):
"""
receive an event containing parameters values to reset the slicer
:param event: event of type SlicerParameterEvent with params as
attribute
"""
wx.PostEvent(self.base.parent,
StatusEvent(status="SectorSlicer._onEVT_SLICER_PARS"))
event.Skip()
if event.type == self.__class__.__name__:
self.set_params(event.params)
self.base.update()
def set_layer(self, n):
[docs] """
Allow adding plot to the same panel
:param n: the number of layer
"""
self.layernum = n
self.update()
def clear(self):
[docs] """
Clear the slicer and all connected events related to this slicer
"""
self.clear_markers()
self.main_line.clear()
self.left_line.clear()
self.right_line.clear()
self.base.connect.clearall()
self.base.Unbind(EVT_SLICER_PARS)
def update(self):
[docs] """
Respond to changes in the model by recalculating the profiles and
resetting the widgets.
"""
# Update locations
## Check if the middle line was dragged and
#update the picture accordingly
if self.main_line.has_move:
self.main_line.update()
self.right_line.update(delta=-self.left_line.phi/2,
mline=self.main_line.theta)
self.left_line.update(delta=self.left_line.phi/2,
mline=self.main_line.theta)
## Check if the left side has moved and update the slicer accordingly
if self.left_line.has_move:
self.main_line.update()
self.left_line.update(phi=None, delta=None, mline=self.main_line,
side=True, left=True)
self.right_line.update(phi=self.left_line.phi, delta=None,
mline=self.main_line, side=True,
left=False, right=True)
## Check if the right side line has moved and
#update the slicer accordingly
if self.right_line.has_move:
self.main_line.update()
self.right_line.update(phi=None, delta=None, mline=self.main_line,
side=True, left=False, right=True)
self.left_line.update(phi=self.right_line.phi, delta=None,
mline=self.main_line, side=True, left=False)
def save(self, ev):
[docs] """
Remember the roughness for this layer and the next so that we
can restore on Esc.
"""
self.base.freeze_axes()
self.main_line.save(ev)
self.right_line.save(ev)
self.left_line.save(ev)
def _post_data(self, nbins=None):
"""
compute sector averaging of data2D into data1D
:param nbins: the number of point to plot for the average 1D data
"""
## get the data2D to average
data = self.base.data2D
# If we have no data, just return
if data == None:
return
## Averaging
from sas.dataloader.manipulations import SectorQ
radius = self.qmax
phimin = -self.left_line.phi + self.main_line.theta
phimax = self.left_line.phi + self.main_line.theta
if nbins == None:
nbins = 20
sect = SectorQ(r_min=0.0, r_max=radius,
phi_min=phimin + math.pi,
phi_max=phimax + math.pi, nbins=nbins)
sector = sect(self.base.data2D)
##Create 1D data resulting from average
if hasattr(sector, "dxl"):
dxl = sector.dxl
else:
dxl = None
if hasattr(sector, "dxw"):
dxw = sector.dxw
else:
dxw = None
new_plot = Data1D(x=sector.x, y=sector.y, dy=sector.dy, dx=sector.dx)
new_plot.dxl = dxl
new_plot.dxw = dxw
new_plot.name = "SectorQ" + "(" + self.base.data2D.name + ")"
new_plot.source = self.base.data2D.source
#new_plot.info=self.base.data2D.info
new_plot.interactive = True
new_plot.detector = self.base.data2D.detector
## If the data file does not tell us what the axes are, just assume...
new_plot.xaxis("\\rm{Q}", "A^{-1}")
new_plot.yaxis("\\rm{Intensity}", "cm^{-1}")
if hasattr(data, "scale") and data.scale == 'linear' and \
self.base.data2D.name.count("Residuals") > 0:
new_plot.ytransform = 'y'
new_plot.yaxis("\\rm{Residuals} ", "/")
new_plot.group_id = "2daverage" + self.base.data2D.name
new_plot.id = "SectorQ" + self.base.data2D.name
new_plot.is_data = True
self.base.parent.update_theory(data_id=data.id, \
theory=new_plot)
wx.PostEvent(self.base.parent, NewPlotEvent(plot=new_plot,
title="SectorQ" + self.base.data2D.name))
def moveend(self, ev):
[docs] """
Called a dragging motion ends.Get slicer event
"""
self.base.thaw_axes()
## Post parameters
event = SlicerParameterEvent()
event.type = self.__class__.__name__
event.params = self.get_params()
## Send slicer paramers to plotter2D
wx.PostEvent(self.base, event)
def restore(self):
[docs] """
Restore the roughness for this layer.
"""
self.main_line.restore()
self.left_line.restore()
self.right_line.restore()
def move(self, x, y, ev):
[docs] """
Process move to a new position, making sure that the move is allowed.
"""
pass
def set_cursor(self, x, y):
[docs] """
"""
pass
def get_params(self):
[docs] """
Store a copy of values of parameters of the slicer into a dictionary.
:return params: the dictionary created
"""
params = {}
## Always make sure that the left and the right line are at phi
## angle of the middle line
if math.fabs(self.left_line.phi) != math.fabs(self.right_line.phi):
msg = "Phi left and phi right are different"
msg += " %f, %f" % (self.left_line.phi, self.right_line.phi)
raise ValueError, msg
params["Phi [deg]"] = self.main_line.theta * 180/math.pi
params["Delta_Phi [deg]"] = math.fabs(self.left_line.phi * 180/math.pi)
params["nbins"] = self.nbins
return params
def set_params(self, params):
[docs] """
Receive a dictionary and reset the slicer with values contained
in the values of the dictionary.
:param params: a dictionary containing name of slicer parameters and
values the user assigned to the slicer.
"""
main = params["Phi [deg]"] * math.pi/180
phi = math.fabs(params["Delta_Phi [deg]"] * math.pi/180)
self.nbins = int(params["nbins"])
self.main_line.theta = main
## Reset the slicer parameters
self.main_line.update()
self.right_line.update(phi=phi, delta=None, mline=self.main_line,
side=True, right=True)
self.left_line.update(phi=phi, delta=None,
mline=self.main_line, side=True)
## post the new corresponding data
self._post_data(nbins=self.nbins)
def freeze_axes(self):
[docs] """
"""
self.base.freeze_axes()
def thaw_axes(self):
[docs] """
"""
self.base.thaw_axes()
def draw(self):
[docs] """
"""
self.base.draw()
class SideInteractor(_BaseInteractor):
[docs] """
Draw an oblique line
:param phi: the phase between the middle line and one side line
:param theta2: the angle between the middle line and x- axis
"""
def __init__(self, base, axes, color='black', zorder=5, r=1.0,
phi=math.pi/4, theta2= math.pi/3):
"""
"""
_BaseInteractor.__init__(self, base, axes, color=color)
## Initialize the class
self.markers = []
self.axes = axes
## compute the value of the angle between the current line and
## the x-axis
self.save_theta = theta2 + phi
self.theta = theta2 + phi
## the value of the middle line angle with respect to the x-axis
self.theta2 = theta2
## Radius to find polar coordinates this line's endpoints
self.radius = r
## phi is the phase between the current line and the middle line
self.phi = phi
## End points polar coordinates
x1 = self.radius * math.cos(self.theta)
y1 = self.radius * math.sin(self.theta)
x2 = -1 * self.radius * math.cos(self.theta)
y2 = -1 * self.radius * math.sin(self.theta)
## defining a new marker
try:
self.inner_marker = self.axes.plot([x1/2.5], [y1/2.5], linestyle='',
marker='s', markersize=10,
color=self.color, alpha=0.6,
pickradius=5, label="pick",
# Prefer this to other lines
zorder=zorder, visible=True)[0]
except:
self.inner_marker = self.axes.plot([x1/2.5],[y1/2.5], linestyle='',
marker='s', markersize=10,
color=self.color, alpha=0.6,
label="pick", visible=True)[0]
message = "\nTHIS PROTOTYPE NEEDS THE LATEST"
message += " VERSION OF MATPLOTLIB\n Get the SVN version that"
message += " is at least as recent as June 1, 2007"
owner = self.base.base.parent
wx.PostEvent(owner,
StatusEvent(status="sectorSlicer: %s" % message))
## Defining the current line
self.line = self.axes.plot([x1, x2], [y1, y2],
linestyle='-', marker='',
color=self.color, visible=True)[0]
## Flag to differentiate the left line from the right line motion
self.left_moving = False
## Flag to define a motion
self.has_move = False
## connecting markers and draw the picture
self.connect_markers([self.inner_marker, self.line])
def set_layer(self, n):
[docs] """
Allow adding plot to the same panel
:param n: the number of layer
"""
self.layernum = n
self.update()
def clear(self):
[docs] """
Clear the slicer and all connected events related to this slicer
"""
self.clear_markers()
try:
self.line.remove()
self.inner_marker.remove()
except:
# Old version of matplotlib
for item in range(len(self.axes.lines)):
del self.axes.lines[0]
def update(self, phi=None, delta=None, mline=None,
[docs] side=False, left= False, right=False):
"""
Draw oblique line
:param phi: the phase between the middle line and the current line
:param delta: phi/2 applied only when the mline was moved
"""
#print "update left or right ", self.has_move
self.left_moving = left
theta3 = 0
if phi != None:
self.phi = phi
if delta == None:
delta = 0
if right:
self.phi = -1 * math.fabs(self.phi)
#delta=-delta
else:
self.phi = math.fabs(self.phi)
if side:
self.theta = mline.theta + self.phi
if mline != None :
if delta != 0:
self.theta2 = mline + delta
else:
self.theta2 = mline.theta
if delta == 0:
theta3 = self.theta + delta
else:
theta3 = self.theta2 + delta
x1 = self.radius * math.cos(theta3)
y1 = self.radius * math.sin(theta3)
x2 = -1 * self.radius * math.cos(theta3)
y2 = -1 * self.radius * math.sin(theta3)
self.inner_marker.set(xdata=[x1/2.5], ydata=[y1/2.5])
self.line.set(xdata=[x1, x2], ydata=[y1, y2])
def save(self, ev):
[docs] """
Remember the roughness for this layer and the next so that we
can restore on Esc.
"""
self.save_theta = self.theta
self.base.freeze_axes()
def moveend(self, ev):
[docs] """
"""
self.has_move = False
self.base.moveend(ev)
def restore(self):
[docs] """
Restore the roughness for this layer.
"""
self.theta = self.save_theta
def move(self, x, y, ev):
[docs] """
Process move to a new position, making sure that the move is allowed.
"""
self.theta = math.atan2(y, x)
self.has_move = True
#ToDo: Simplify below
if not self.left_moving:
if self.theta2 - self.theta <= 0 and self.theta2 > 0:
self.restore()
return
elif self.theta2 < 0 and self.theta < 0 and \
self.theta-self.theta2 >= 0:
self.restore()
return
elif self.theta2 < 0 and self.theta > 0 and \
(self.theta2 + 2 * math.pi - self.theta) >= math.pi/2:
#print "my theta", self.theta
self.restore()
return
elif self.theta2 < 0 and self.theta < 0 and \
(self.theta2 - self.theta) >= math.pi/2:
#print "my theta", self.theta
self.restore()
return
elif self.theta2 > 0 and (self.theta2-self.theta >= math.pi/2 or \
(self.theta2-self.theta >= math.pi/2)):
#print "self theta encore"
self.restore()
return
else:
#print "left move"
if self.theta < 0 and (self.theta + math.pi*2-self.theta2) <= 0:
self.restore()
return
elif self.theta2 < 0 and (self.theta-self.theta2) <= 0:
self.restore()
return
elif self.theta > 0 and self.theta-self.theta2 <= 0:
#print "my theta", self.theta
self.restore()
return
elif self.theta-self.theta2 >= math.pi/2 or \
((self.theta + math.pi * 2 - self.theta2) >= math.pi/2 and \
self.theta < 0 and self.theta2 > 0):
#print "self theta encore"
self.restore()
return
self.phi = math.fabs(self.theta2 - self.theta)
if self.phi > math.pi:
self.phi = 2 * math.pi - math.fabs(self.theta2 - self.theta)
self.base.base.update()
def set_cursor(self, x, y):
[docs] """
"""
self.move(x, y, None)
self.update()
def get_params(self):
[docs] """
"""
params = {}
params["radius"] = self.radius
params["theta"] = self.theta
return params
def set_params(self, params):
[docs] """
"""
x = params["radius"]
self.set_cursor(x, None)
class LineInteractor(_BaseInteractor):
[docs] """
Select an annulus through a 2D plot
"""
def __init__(self, base, axes, color='black',
zorder=5, r=1.0, theta=math.pi/4):
"""
"""
_BaseInteractor.__init__(self, base, axes, color=color)
self.markers = []
self.axes = axes
self.save_theta = theta
self.theta= theta
self.radius = r
self.scale = 10.0
# Inner circle
x1 = self.radius * math.cos(self.theta)
y1 = self.radius * math.sin(self.theta)
x2 = -1*self.radius * math.cos(self.theta)
y2 = -1*self.radius * math.sin(self.theta)
try:
# Inner circle marker
self.inner_marker = self.axes.plot([x1/2.5], [y1/2.5], linestyle='',
marker='s', markersize=10,
color=self.color, alpha=0.6,
pickradius=5, label="pick",
# Prefer this to other lines
zorder=zorder,
visible=True)[0]
except:
self.inner_marker = self.axes.plot([x1/2.5], [y1/2.5], linestyle='',
marker='s', markersize=10,
color=self.color, alpha=0.6,
label="pick",
visible=True)[0]
message = "\nTHIS PROTOTYPE NEEDS THE LATEST VERSION"
message += " OF MATPLOTLIB\n Get the SVN version that is at"
message += " least as recent as June 1, 2007"
self.line = self.axes.plot([x1, x2], [y1, y2],
linestyle='-', marker='',
color=self.color, visible=True)[0]
self.npts = 20
self.has_move = False
self.connect_markers([self.inner_marker, self.line])
self.update()
def set_layer(self, n):
[docs] """
"""
self.layernum = n
self.update()
def clear(self):
[docs] """
"""
self.clear_markers()
try:
self.inner_marker.remove()
self.line.remove()
except:
# Old version of matplotlib
for item in range(len(self.axes.lines)):
del self.axes.lines[0]
def update(self, theta=None):
[docs] """
Draw the new roughness on the graph.
"""
if theta != None:
self.theta = theta
x1 = self.radius * math.cos(self.theta)
y1 = self.radius * math.sin(self.theta)
x2 = -1 * self.radius * math.cos(self.theta)
y2 = -1 * self.radius * math.sin(self.theta)
self.inner_marker.set(xdata=[x1/2.5], ydata=[y1/2.5])
self.line.set(xdata=[x1, x2], ydata=[y1, y2])
def save(self, ev):
[docs] """
Remember the roughness for this layer and the next so that we
can restore on Esc.
"""
self.save_theta= self.theta
self.base.freeze_axes()
def moveend(self, ev):
[docs] """
"""
self.has_move = False
self.base.moveend(ev)
def restore(self):
[docs] """
Restore the roughness for this layer.
"""
self.theta = self.save_theta
def move(self, x, y, ev):
[docs] """
Process move to a new position, making sure that the move is allowed.
"""
self.theta = math.atan2(y, x)
self.has_move = True
self.base.base.update()
def set_cursor(self, x, y):
[docs] """
"""
self.move(x, y, None)
self.update()
def get_params(self):
[docs] """
"""
params = {}
params["radius"] = self.radius
params["theta"] = self.theta
return params
def set_params(self, params):
[docs] """
"""
x = params["radius"]
self.set_cursor(x, None)