Source code for sas.models.BarBellModel

##############################################################################
# This software was developed by the University of Tennessee as part of the
# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
# project funded by the US National Science Foundation.
#
# If you use DANSE applications to do scientific research that leads to
# publication, we ask that you acknowledge the use of the software with the
# following sentence:
#
# This work benefited from DANSE software developed under NSF award DMR-0520547
#
# Copyright 2008-2011, University of Tennessee
##############################################################################

""" 
Provide functionality for a C extension model

.. WARNING::

   THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
   DO NOT MODIFY THIS FILE, MODIFY
   src/sas/models/include/barbell.h
   AND RE-RUN THE GENERATOR SCRIPT
"""

from sas.models.BaseComponent import BaseComponent
from sas.models.sas_extension.c_models import CBarBellModel

[docs]def create_BarBellModel(): """ Create a model instance """ obj = BarBellModel() # CBarBellModel.__init__(obj) is called by # the BarBellModel constructor return obj
[docs]class BarBellModel(CBarBellModel, BaseComponent): """ Class that evaluates a BarBellModel model. This file was auto-generated from src/sas/models/include/barbell.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * scale = 1.0 * rad_bar = 20.0 [A] * len_bar = 400.0 [A] * rad_bell = 40.0 [A] * sld_barbell = 1e-06 [1/A^(2)] * sld_solv = 6.3e-06 [1/A^(2)] * background = 0.0 [1/cm] * theta = 0.0 [deg] * phi = 0.0 [deg] """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CBarBellModel.__init__, (self,)) CBarBellModel.__init__(self) self.is_multifunc = False ## Name of the model self.name = "BarBellModel" ## Model description self.description = """ Calculates the scattering from a barbell-shaped cylinder. That is a sphereocylinder with spherical end caps that have a radius larger than that of the cylinder and the center of the end cap radius lies outside of the cylinder. Note: As the length of cylinder(bar) -->0, it becomes a dumbbell. And when rad_bar = rad_bell, it is a spherocylinder. It must be that rad_bar <(=) rad_bell. [Parameters]; scale: volume fraction of spheres, background:incoherent background, rad_bar: radius of the cylindrical bar, len_bar: length of the cylindrical bar, rad_bell: radius of the spherical bell, sld_barbell: SLD of the barbell, sld_solv: SLD of the solvent. """ ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['rad_bar'] = ['[A]', None, None] self.details['len_bar'] = ['[A]', None, None] self.details['rad_bell'] = ['[A]', None, None] self.details['sld_barbell'] = ['[1/A^(2)]', None, None] self.details['sld_solv'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['theta'] = ['[deg]', None, None] self.details['phi'] = ['[deg]', None, None] ## fittable parameters self.fixed = ['rad_bar.width', 'len_bar', 'rad_bell', 'phi.width', 'theta.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = ['phi', 'theta', 'phi.width', 'theta.width'] ## parameters with magnetism self.magnetic_params = [] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_BarBellModel, tuple(), state, None, None)
[docs] def clone(self): """ Return a identical copy of self """ return self._clone(BarBellModel())
[docs] def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CBarBellModel.run(self, x)
[docs] def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CBarBellModel.runXY(self, x)
[docs] def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CBarBellModel.evalDistribution(self, x)
[docs] def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CBarBellModel.calculate_ER(self)
[docs] def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CBarBellModel.calculate_VR(self)
[docs] def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CBarBellModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file