Source code for sas.models.CSParallelepipedModel

##############################################################################
# This software was developed by the University of Tennessee as part of the
# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
# project funded by the US National Science Foundation.
#
# If you use DANSE applications to do scientific research that leads to
# publication, we ask that you acknowledge the use of the software with the
# following sentence:
#
# This work benefited from DANSE software developed under NSF award DMR-0520547
#
# Copyright 2008-2011, University of Tennessee
##############################################################################

""" 
Provide functionality for a C extension model

.. WARNING::

   THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
   DO NOT MODIFY THIS FILE, MODIFY
   src/sas/models/include/csparallelepiped.h
   AND RE-RUN THE GENERATOR SCRIPT
"""

from sas.models.BaseComponent import BaseComponent
from sas.models.sas_extension.c_models import CCSParallelepipedModel

[docs]def create_CSParallelepipedModel(): """ Create a model instance """ obj = CSParallelepipedModel() # CCSParallelepipedModel.__init__(obj) is called by # the CSParallelepipedModel constructor return obj
[docs]class CSParallelepipedModel(CCSParallelepipedModel, BaseComponent): """ Class that evaluates a CSParallelepipedModel model. This file was auto-generated from src/sas/models/include/csparallelepiped.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * scale = 1.0 * shortA = 35.0 [A] * midB = 75.0 [A] * longC = 400.0 [A] * rimA = 10.0 [A] * rimB = 10.0 [A] * rimC = 10.0 [A] * sld_rimA = 2e-06 [1/A^(2)] * sld_rimB = 4e-06 [1/A^(2)] * sld_rimC = 2e-06 [1/A^(2)] * sld_pcore = 1e-06 [1/A^(2)] * sld_solv = 6e-06 [1/A^(2)] * background = 0.06 [1/cm] * parallel_theta = 0.0 [deg] * parallel_phi = 0.0 [deg] * parallel_psi = 0.0 [deg] """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CCSParallelepipedModel.__init__, (self,)) CCSParallelepipedModel.__init__(self) self.is_multifunc = False ## Name of the model self.name = "CSParallelepipedModel" ## Model description self.description = """ Form factor for a rectangular Shell. Below are the Parameters. scale: scale factor shortA: length of short edge [A] midB: length of another short edge [A] longC: length of long edge of the parallelepiped [A] rimA: length of short edge [A] rimB: length of another short edge [A] rimC: length of long edge of the parallelepiped [A] sld_rimA: sld of rimA [1/A^(2)] sld_rimB: sld of rimB [1/A^(2)] sld_rimC: sld of rimC [1/A^(2)] sld_core: Pipe_sld [1/A^(2)] sld_solv: solvent_sld [1/A^(2)] background: incoherent Background [1/cm] """ ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['shortA'] = ['[A]', None, None] self.details['midB'] = ['[A]', None, None] self.details['longC'] = ['[A]', None, None] self.details['rimA'] = ['[A]', None, None] self.details['rimB'] = ['[A]', None, None] self.details['rimC'] = ['[A]', None, None] self.details['sld_rimA'] = ['[1/A^(2)]', None, None] self.details['sld_rimB'] = ['[1/A^(2)]', None, None] self.details['sld_rimC'] = ['[1/A^(2)]', None, None] self.details['sld_pcore'] = ['[1/A^(2)]', None, None] self.details['sld_solv'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['parallel_theta'] = ['[deg]', None, None] self.details['parallel_phi'] = ['[deg]', None, None] self.details['parallel_psi'] = ['[deg]', None, None] ## fittable parameters self.fixed = ['shortA.width', 'midB.width', 'longC.width', 'parallel_phi.width', 'parallel_psi.width', 'parallel_theta.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = ['parallel_phi', 'parallel_psi', 'parallel_theta', 'parallel_phi.width', 'parallel_psi.width', 'parallel_theta.width'] ## parameters with magnetism self.magnetic_params = [] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_CSParallelepipedModel, tuple(), state, None, None)
[docs] def clone(self): """ Return a identical copy of self """ return self._clone(CSParallelepipedModel())
[docs] def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CCSParallelepipedModel.run(self, x)
[docs] def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CCSParallelepipedModel.runXY(self, x)
[docs] def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CCSParallelepipedModel.evalDistribution(self, x)
[docs] def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CCSParallelepipedModel.calculate_ER(self)
[docs] def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CCSParallelepipedModel.calculate_VR(self)
[docs] def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CCSParallelepipedModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file