Source code for sas.models.Core2ndMomentModel

##############################################################################
# This software was developed by the University of Tennessee as part of the
# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
# project funded by the US National Science Foundation.
#
# If you use DANSE applications to do scientific research that leads to
# publication, we ask that you acknowledge the use of the software with the
# following sentence:
#
# This work benefited from DANSE software developed under NSF award DMR-0520547
#
# Copyright 2008-2011, University of Tennessee
##############################################################################

""" 
Provide functionality for a C extension model

.. WARNING::

   THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
   DO NOT MODIFY THIS FILE, MODIFY
   src/sas/models/include/coresecondmoment.h
   AND RE-RUN THE GENERATOR SCRIPT
"""

from sas.models.BaseComponent import BaseComponent
from sas.models.sas_extension.c_models import CCore2ndMomentModel

[docs]def create_Core2ndMomentModel(): """ Create a model instance """ obj = Core2ndMomentModel() # CCore2ndMomentModel.__init__(obj) is called by # the Core2ndMomentModel constructor return obj
[docs]class Core2ndMomentModel(CCore2ndMomentModel, BaseComponent): """ Class that evaluates a Core2ndMomentModel model. This file was auto-generated from src/sas/models/include/coresecondmoment.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * scale = 1.0 * density_poly = 0.7 [g/cm^(3)] * sld_poly = 1.5e-06 [1/A^(2)] * radius_core = 500.0 [A] * volf_cores = 0.14 * ads_amount = 1.9 [mg/m^(2)] * sld_solv = 6.3e-06 [1/A^(2)] * second_moment = 23.0 [A] * background = 0.0 [1/cm] """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CCore2ndMomentModel.__init__, (self,)) CCore2ndMomentModel.__init__(self) self.is_multifunc = False ## Name of the model self.name = "Core2ndMomentModel" ## Model description self.description = """ Calculate CoreSecondMoment Model scale:calibration factor, density_poly: density of the layer sld_poly: the SLD of the layer volf_cores: volume fraction of cores ads_amount: adsorbed amount second_moment: second moment of the layer sld_solv: the SLD of the solvent background """ ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['density_poly'] = ['[g/cm^(3)]', None, None] self.details['sld_poly'] = ['[1/A^(2)]', None, None] self.details['radius_core'] = ['[A]', None, None] self.details['volf_cores'] = ['', None, None] self.details['ads_amount'] = ['[mg/m^(2)]', None, None] self.details['sld_solv'] = ['[1/A^(2)]', None, None] self.details['second_moment'] = ['[A]', None, None] self.details['background'] = ['[1/cm]', None, None] ## fittable parameters self.fixed = ['radius_core.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = [] ## parameters with magnetism self.magnetic_params = [] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_Core2ndMomentModel, tuple(), state, None, None)
[docs] def clone(self): """ Return a identical copy of self """ return self._clone(Core2ndMomentModel())
[docs] def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CCore2ndMomentModel.run(self, x)
[docs] def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CCore2ndMomentModel.runXY(self, x)
[docs] def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CCore2ndMomentModel.evalDistribution(self, x)
[docs] def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CCore2ndMomentModel.calculate_ER(self)
[docs] def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CCore2ndMomentModel.calculate_VR(self)
[docs] def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CCore2ndMomentModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file