##############################################################################
# This software was developed by the University of Tennessee as part of the
# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
# project funded by the US National Science Foundation.
#
# If you use DANSE applications to do scientific research that leads to
# publication, we ask that you acknowledge the use of the software with the
# following sentence:
#
# This work benefited from DANSE software developed under NSF award DMR-0520547
#
# Copyright 2008-2011, University of Tennessee
##############################################################################
"""
Provide functionality for a C extension model
.. WARNING::
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
DO NOT MODIFY THIS FILE, MODIFY
src/sas/models/include/lamellarPS_HG.h
AND RE-RUN THE GENERATOR SCRIPT
"""
from sas.models.BaseComponent import BaseComponent
from sas.models.sas_extension.c_models import CLamellarPSHGModel
[docs]def create_LamellarPSHGModel():
"""
Create a model instance
"""
obj = LamellarPSHGModel()
# CLamellarPSHGModel.__init__(obj) is called by
# the LamellarPSHGModel constructor
return obj
[docs]class LamellarPSHGModel(CLamellarPSHGModel, BaseComponent):
"""
Class that evaluates a LamellarPSHGModel model.
This file was auto-generated from src/sas/models/include/lamellarPS_HG.h.
Refer to that file and the structure it contains
for details of the model.
List of default parameters:
* scale = 1.0
* spacing = 40.0 [A]
* deltaT = 10.0 [A]
* deltaH = 2.0 [A]
* sld_tail = 4e-07 [1/A^(2)]
* sld_head = 2e-06 [1/A^(2)]
* sld_solvent = 6e-06 [1/A^(2)]
* n_plates = 30.0
* caille = 0.001
* background = 0.001 [1/cm]
"""
def __init__(self, multfactor=1):
""" Initialization """
self.__dict__ = {}
# Initialize BaseComponent first, then sphere
BaseComponent.__init__(self)
#apply(CLamellarPSHGModel.__init__, (self,))
CLamellarPSHGModel.__init__(self)
self.is_multifunc = False
## Name of the model
self.name = "LamellarPSHGModel"
## Model description
self.description = """
[Concentrated Lamellar (head+tail) Form Factor]: Calculates the
intensity from a lyotropic lamellar phase.
The intensity (form factor and structure factor)
calculated is for lamellae of two-layer scattering
length density that are randomly distributed in
solution (a powder average). The scattering
length density of the tail region, headgroup
region, and solvent are taken to be different.
The model can also be applied to large,
multi-lamellar vesicles.
No resolution smeared version is included
in the structure factor of this model.
*Parameters: spacing = repeat spacing,
deltaT = tail length,
deltaH = headgroup thickness,
n_plates = # of Lamellar plates
caille = Caille parameter (<0.8 or <1)
background = incoherent bgd
scale = scale factor ...
"""
## Parameter details [units, min, max]
self.details = {}
self.details['scale'] = ['', None, None]
self.details['spacing'] = ['[A]', None, None]
self.details['deltaT'] = ['[A]', None, None]
self.details['deltaH'] = ['[A]', None, None]
self.details['sld_tail'] = ['[1/A^(2)]', None, None]
self.details['sld_head'] = ['[1/A^(2)]', None, None]
self.details['sld_solvent'] = ['[1/A^(2)]', None, None]
self.details['n_plates'] = ['', None, None]
self.details['caille'] = ['', None, None]
self.details['background'] = ['[1/cm]', None, None]
## fittable parameters
self.fixed = ['deltaT.width',
'deltaH.width',
'spacing.width']
## non-fittable parameters
self.non_fittable = []
## parameters with orientation
self.orientation_params = []
## parameters with magnetism
self.magnetic_params = []
self.category = None
self.multiplicity_info = None
def __setstate__(self, state):
"""
restore the state of a model from pickle
"""
self.__dict__, self.params, self.dispersion = state
def __reduce_ex__(self, proto):
"""
Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of
c model.
"""
state = (self.__dict__, self.params, self.dispersion)
return (create_LamellarPSHGModel, tuple(), state, None, None)
[docs] def clone(self):
""" Return a identical copy of self """
return self._clone(LamellarPSHGModel())
[docs] def run(self, x=0.0):
"""
Evaluate the model
:param x: input q, or [q,phi]
:return: scattering function P(q)
"""
return CLamellarPSHGModel.run(self, x)
[docs] def runXY(self, x=0.0):
"""
Evaluate the model in cartesian coordinates
:param x: input q, or [qx, qy]
:return: scattering function P(q)
"""
return CLamellarPSHGModel.runXY(self, x)
[docs] def evalDistribution(self, x):
"""
Evaluate the model in cartesian coordinates
:param x: input q[], or [qx[], qy[]]
:return: scattering function P(q[])
"""
return CLamellarPSHGModel.evalDistribution(self, x)
[docs] def calculate_ER(self):
"""
Calculate the effective radius for P(q)*S(q)
:return: the value of the effective radius
"""
return CLamellarPSHGModel.calculate_ER(self)
[docs] def calculate_VR(self):
"""
Calculate the volf ratio for P(q)*S(q)
:return: the value of the volf ratio
"""
return CLamellarPSHGModel.calculate_VR(self)
[docs] def set_dispersion(self, parameter, dispersion):
"""
Set the dispersion object for a model parameter
:param parameter: name of the parameter [string]
:param dispersion: dispersion object of type DispersionModel
"""
return CLamellarPSHGModel.set_dispersion(self,
parameter, dispersion.cdisp)
# End of file