Source code for sas.models.MultiShellModel

##############################################################################
# This software was developed by the University of Tennessee as part of the
# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
# project funded by the US National Science Foundation.
#
# If you use DANSE applications to do scientific research that leads to
# publication, we ask that you acknowledge the use of the software with the
# following sentence:
#
# This work benefited from DANSE software developed under NSF award DMR-0520547
#
# Copyright 2008-2011, University of Tennessee
##############################################################################

""" 
Provide functionality for a C extension model

.. WARNING::

   THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
   DO NOT MODIFY THIS FILE, MODIFY
   src/sas/models/include/multishell.h
   AND RE-RUN THE GENERATOR SCRIPT
"""

from sas.models.BaseComponent import BaseComponent
from sas.models.sas_extension.c_models import CMultiShellModel

[docs]def create_MultiShellModel(): """ Create a model instance """ obj = MultiShellModel() # CMultiShellModel.__init__(obj) is called by # the MultiShellModel constructor return obj
[docs]class MultiShellModel(CMultiShellModel, BaseComponent): """ Class that evaluates a MultiShellModel model. This file was auto-generated from src/sas/models/include/multishell.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * scale = 1.0 * core_radius = 60.0 [A] * s_thickness = 10.0 [A] * w_thickness = 10.0 [A] * core_sld = 6.4e-06 [1/A^(2)] * shell_sld = 4e-07 [1/A^(2)] * n_pairs = 2.0 * background = 0.0 [1/cm] """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CMultiShellModel.__init__, (self,)) CMultiShellModel.__init__(self) self.is_multifunc = False ## Name of the model self.name = "MultiShellModel" ## Model description self.description = """ MultiShell (Sphere) Model (or Multilamellar Vesicles): Model parameters; scale : scale factor core_radius : Core radius of the multishell s_thickness: shell thickness w_thickness: water thickness core_sld: core scattering length density shell_sld: shell scattering length density n_pairs:number of pairs of water/shell background: incoherent background """ ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['core_radius'] = ['[A]', None, None] self.details['s_thickness'] = ['[A]', None, None] self.details['w_thickness'] = ['[A]', None, None] self.details['core_sld'] = ['[1/A^(2)]', None, None] self.details['shell_sld'] = ['[1/A^(2)]', None, None] self.details['n_pairs'] = ['', None, None] self.details['background'] = ['[1/cm]', None, None] ## fittable parameters self.fixed = ['core_radius.width', 's_thickness.width', 'w_thickness.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = [] ## parameters with magnetism self.magnetic_params = [] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_MultiShellModel, tuple(), state, None, None)
[docs] def clone(self): """ Return a identical copy of self """ return self._clone(MultiShellModel())
[docs] def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CMultiShellModel.run(self, x)
[docs] def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CMultiShellModel.runXY(self, x)
[docs] def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CMultiShellModel.evalDistribution(self, x)
[docs] def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CMultiShellModel.calculate_ER(self)
[docs] def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CMultiShellModel.calculate_VR(self)
[docs] def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CMultiShellModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file