##############################################################################
# This software was developed by the University of Tennessee as part of the
# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
# project funded by the US National Science Foundation.
#
# If you use DANSE applications to do scientific research that leads to
# publication, we ask that you acknowledge the use of the software with the
# following sentence:
#
# This work benefited from DANSE software developed under NSF award DMR-0520547
#
# Copyright 2008-2011, University of Tennessee
##############################################################################
"""
Provide functionality for a C extension model
.. WARNING::
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
DO NOT MODIFY THIS FILE, MODIFY
src/sas/models/include/onion.h
AND RE-RUN THE GENERATOR SCRIPT
"""
from sas.models.BaseComponent import BaseComponent
from sas.models.sas_extension.c_models import COnionModel
[docs]def create_OnionModel():
"""
Create a model instance
"""
obj = OnionModel()
# COnionModel.__init__(obj) is called by
# the OnionModel constructor
return obj
[docs]class OnionModel(COnionModel, BaseComponent):
"""
Class that evaluates a OnionModel model.
This file was auto-generated from src/sas/models/include/onion.h.
Refer to that file and the structure it contains
for details of the model.
List of default parameters:
* n_shells = 1.0
* scale = 1.0
* rad_core0 = 200.0 [A]
* sld_core0 = 1e-06 [1/A^(2)]
* sld_solv = 6.4e-06 [1/A^(2)]
* background = 0.0 [1/cm]
* sld_out_shell1 = 2e-06 [1/A^(2)]
* sld_out_shell2 = 2.5e-06 [1/A^(2)]
* sld_out_shell3 = 3e-06 [1/A^(2)]
* sld_out_shell4 = 3.5e-06 [1/A^(2)]
* sld_out_shell5 = 4e-06 [1/A^(2)]
* sld_out_shell6 = 4.5e-06 [1/A^(2)]
* sld_out_shell7 = 5e-06 [1/A^(2)]
* sld_out_shell8 = 5.5e-06 [1/A^(2)]
* sld_out_shell9 = 6e-06 [1/A^(2)]
* sld_out_shell10 = 6.2e-06 [1/A^(2)]
* sld_in_shell1 = 1.7e-06 [1/A^(2)]
* sld_in_shell2 = 2.2e-06 [1/A^(2)]
* sld_in_shell3 = 2.7e-06 [1/A^(2)]
* sld_in_shell4 = 3.2e-06 [1/A^(2)]
* sld_in_shell5 = 3.7e-06 [1/A^(2)]
* sld_in_shell6 = 4.2e-06 [1/A^(2)]
* sld_in_shell7 = 4.7e-06 [1/A^(2)]
* sld_in_shell8 = 5.2e-06 [1/A^(2)]
* sld_in_shell9 = 5.7e-06 [1/A^(2)]
* sld_in_shell10 = 6e-06 [1/A^(2)]
* A_shell1 = 1.0
* A_shell2 = 1.0
* A_shell3 = 1.0
* A_shell4 = 1.0
* A_shell5 = 1.0
* A_shell6 = 1.0
* A_shell7 = 1.0
* A_shell8 = 1.0
* A_shell9 = 1.0
* A_shell10 = 1.0
* thick_shell1 = 50.0 [A]
* thick_shell2 = 50.0 [A]
* thick_shell3 = 50.0 [A]
* thick_shell4 = 50.0 [A]
* thick_shell5 = 50.0 [A]
* thick_shell6 = 50.0 [A]
* thick_shell7 = 50.0 [A]
* thick_shell8 = 50.0 [A]
* thick_shell9 = 50.0 [A]
* thick_shell10 = 50.0 [A]
* func_shell1 = 2.0
* func_shell2 = 2.0
* func_shell3 = 2.0
* func_shell4 = 2.0
* func_shell5 = 2.0
* func_shell6 = 2.0
* func_shell7 = 2.0
* func_shell8 = 2.0
* func_shell9 = 2.0
* func_shell10 = 2.0
"""
def __init__(self, multfactor=1):
""" Initialization """
self.__dict__ = {}
# Initialize BaseComponent first, then sphere
BaseComponent.__init__(self)
#apply(COnionModel.__init__, (self,))
COnionModel.__init__(self)
self.is_multifunc = False
## Name of the model
self.name = "OnionModel"
## Model description
self.description = """
Form factor of mutishells normalized by the volume. Here each shell is described
by an exponential function;
I)
For A_shell != 0,
f(r) = B*exp(A_shell*(r-r_in)/thick_shell)+C
where
B=(sld_out-sld_in)/(exp(A_shell)-1)
C=sld_in-B.
Note that in the above case,
the function becomes a linear function
as A_shell --> 0+ or 0-.
II)
For the exact point of A_shell == 0,
f(r) = sld_in ,i.e., it crosses over flat function
Note that the 'sld_out' becaomes NULL in this case.
background:background,
rad_core0: radius of sphere(core)
thick_shell#:the thickness of the shell#
sld_core0: the SLD of the sphere
sld_solv: the SLD of the solvent
sld_shell: the SLD of the shell#
A_shell#: the coefficient in the exponential function
"""
## Parameter details [units, min, max]
self.details = {}
self.details['n_shells'] = ['', None, None]
self.details['scale'] = ['', None, None]
self.details['rad_core0'] = ['[A]', None, None]
self.details['sld_core0'] = ['[1/A^(2)]', None, None]
self.details['sld_solv'] = ['[1/A^(2)]', None, None]
self.details['background'] = ['[1/cm]', None, None]
self.details['sld_out_shell1'] = ['[1/A^(2)]', None, None]
self.details['sld_out_shell2'] = ['[1/A^(2)]', None, None]
self.details['sld_out_shell3'] = ['[1/A^(2)]', None, None]
self.details['sld_out_shell4'] = ['[1/A^(2)]', None, None]
self.details['sld_out_shell5'] = ['[1/A^(2)]', None, None]
self.details['sld_out_shell6'] = ['[1/A^(2)]', None, None]
self.details['sld_out_shell7'] = ['[1/A^(2)]', None, None]
self.details['sld_out_shell8'] = ['[1/A^(2)]', None, None]
self.details['sld_out_shell9'] = ['[1/A^(2)]', None, None]
self.details['sld_out_shell10'] = ['[1/A^(2)]', None, None]
self.details['sld_in_shell1'] = ['[1/A^(2)]', None, None]
self.details['sld_in_shell2'] = ['[1/A^(2)]', None, None]
self.details['sld_in_shell3'] = ['[1/A^(2)]', None, None]
self.details['sld_in_shell4'] = ['[1/A^(2)]', None, None]
self.details['sld_in_shell5'] = ['[1/A^(2)]', None, None]
self.details['sld_in_shell6'] = ['[1/A^(2)]', None, None]
self.details['sld_in_shell7'] = ['[1/A^(2)]', None, None]
self.details['sld_in_shell8'] = ['[1/A^(2)]', None, None]
self.details['sld_in_shell9'] = ['[1/A^(2)]', None, None]
self.details['sld_in_shell10'] = ['[1/A^(2)]', None, None]
self.details['A_shell1'] = ['', None, None]
self.details['A_shell2'] = ['', None, None]
self.details['A_shell3'] = ['', None, None]
self.details['A_shell4'] = ['', None, None]
self.details['A_shell5'] = ['', None, None]
self.details['A_shell6'] = ['', None, None]
self.details['A_shell7'] = ['', None, None]
self.details['A_shell8'] = ['', None, None]
self.details['A_shell9'] = ['', None, None]
self.details['A_shell10'] = ['', None, None]
self.details['thick_shell1'] = ['[A]', None, None]
self.details['thick_shell2'] = ['[A]', None, None]
self.details['thick_shell3'] = ['[A]', None, None]
self.details['thick_shell4'] = ['[A]', None, None]
self.details['thick_shell5'] = ['[A]', None, None]
self.details['thick_shell6'] = ['[A]', None, None]
self.details['thick_shell7'] = ['[A]', None, None]
self.details['thick_shell8'] = ['[A]', None, None]
self.details['thick_shell9'] = ['[A]', None, None]
self.details['thick_shell10'] = ['[A]', None, None]
self.details['func_shell1'] = ['', None, None]
self.details['func_shell2'] = ['', None, None]
self.details['func_shell3'] = ['', None, None]
self.details['func_shell4'] = ['', None, None]
self.details['func_shell5'] = ['', None, None]
self.details['func_shell6'] = ['', None, None]
self.details['func_shell7'] = ['', None, None]
self.details['func_shell8'] = ['', None, None]
self.details['func_shell9'] = ['', None, None]
self.details['func_shell10'] = ['', None, None]
## fittable parameters
self.fixed = ['rad_core0.width',
'thick_shell1.width',
'thick_shell2.width',
'thick_shell3.width',
'thick_shell4.width',
'thick_shell5.width',
'thick_shell6.width',
'thick_shell7.width',
'thick_shell8.width',
'thick_shell9.width',
'thick_shell10.width']
## non-fittable parameters
self.non_fittable = []
## parameters with orientation
self.orientation_params = []
## parameters with magnetism
self.magnetic_params = []
self.category = None
self.multiplicity_info = None
def __setstate__(self, state):
"""
restore the state of a model from pickle
"""
self.__dict__, self.params, self.dispersion = state
def __reduce_ex__(self, proto):
"""
Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of
c model.
"""
state = (self.__dict__, self.params, self.dispersion)
return (create_OnionModel, tuple(), state, None, None)
[docs] def clone(self):
""" Return a identical copy of self """
return self._clone(OnionModel())
[docs] def run(self, x=0.0):
"""
Evaluate the model
:param x: input q, or [q,phi]
:return: scattering function P(q)
"""
return COnionModel.run(self, x)
[docs] def runXY(self, x=0.0):
"""
Evaluate the model in cartesian coordinates
:param x: input q, or [qx, qy]
:return: scattering function P(q)
"""
return COnionModel.runXY(self, x)
[docs] def evalDistribution(self, x):
"""
Evaluate the model in cartesian coordinates
:param x: input q[], or [qx[], qy[]]
:return: scattering function P(q[])
"""
return COnionModel.evalDistribution(self, x)
[docs] def calculate_ER(self):
"""
Calculate the effective radius for P(q)*S(q)
:return: the value of the effective radius
"""
return COnionModel.calculate_ER(self)
[docs] def calculate_VR(self):
"""
Calculate the volf ratio for P(q)*S(q)
:return: the value of the volf ratio
"""
return COnionModel.calculate_VR(self)
[docs] def set_dispersion(self, parameter, dispersion):
"""
Set the dispersion object for a model parameter
:param parameter: name of the parameter [string]
:param dispersion: dispersion object of type DispersionModel
"""
return COnionModel.set_dispersion(self,
parameter, dispersion.cdisp)
# End of file