Source code for sas.models.PeakGaussModel
#!/usr/bin/env python
"""
Model describes a Gaussian shaped peak including a flat background
Provide F(q) = scale*exp( -1/2 *[(q-q0)/B]^2 )+ background
PeakGaussModel function as a BaseComponent model
"""
from sas.models.BaseComponent import BaseComponent
import math
[docs]class PeakGaussModel(BaseComponent):
"""
Class that evaluates a gaussian shaped peak.
F(q) = scale*exp( -1/2 *[(q-qo)/B]^2 )+ background
The model has three parameters:
scale = scale
q0 = peak position
B = standard deviation
background= incoherent background
"""
def __init__(self):
""" Initialization """
# Initialize BaseComponent first, then sphere
BaseComponent.__init__(self)
## Name of the model
self.name = "Peak Gauss Model"
self.description=""" F(q) = scale*exp( -1/2 *[(q-q0)/B]^2 )+ background
The model has three parameters:
scale = scale
q0 = peak position
B = standard deviation
background= incoherent background"""
## Define parameters
self.params = {}
self.params['scale'] = 100.0
self.params['q0'] = 0.05
self.params['B'] = 0.005
self.params['background'] = 1.0
## Parameter details [units, min, max]
self.details = {}
self.details['q0'] = ['[1/A]', None, None]
self.details['scale'] = ['', 0, None]
self.details['B'] = ['[1/A]', None, None]
self.details['background'] = ['[1/cm]', None, None]
#list of parameter that cannot be fitted
self.fixed= []
def _PeakGauss(self, x):
"""
Evaluate F(x) = scale*exp( -1/2 *[(x-q0)/B]^2 )+ background
"""
return self.params['scale']*math.exp(-1/2 *\
math.pow((x - self.params['q0'])/self.params['B'],2)) \
+ self.params['background']
[docs] def run(self, x = 0.0):
""" Evaluate the model
@param x: input q-value (float or [float, float] as [r, theta])
@return: (Peak Gaussian value)
"""
if x.__class__.__name__ == 'list':
return self._PeakGauss(x[0])
elif x.__class__.__name__ == 'tuple':
raise ValueError, "Tuples are not allowed as input to BaseComponent models"
else:
return self._PeakGauss(x)
[docs] def runXY(self, x = 0.0):
""" Evaluate the model
@param x: input q-value (float or [float, float] as [qx, qy])
@return: Peak Gaussian value
"""
if x.__class__.__name__ == 'list':
q = math.sqrt(x[0]**2 + x[1]**2)
return self._PeakGauss(q)
elif x.__class__.__name__ == 'tuple':
raise ValueError, "Tuples are not allowed as input to BaseComponent models"
else:
return self._PeakGauss(x)