Source code for sas.models.ReflAdvModel

##############################################################################
# This software was developed by the University of Tennessee as part of the
# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
# project funded by the US National Science Foundation.
#
# If you use DANSE applications to do scientific research that leads to
# publication, we ask that you acknowledge the use of the software with the
# following sentence:
#
# This work benefited from DANSE software developed under NSF award DMR-0520547
#
# Copyright 2008-2011, University of Tennessee
##############################################################################

""" 
Provide functionality for a C extension model

.. WARNING::

   THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
   DO NOT MODIFY THIS FILE, MODIFY
   src/sas/models/include/refl_adv.h
   AND RE-RUN THE GENERATOR SCRIPT
"""

from sas.models.BaseComponent import BaseComponent
from sas.models.sas_extension.c_models import CReflAdvModel

[docs]def create_ReflAdvModel(): """ Create a model instance """ obj = ReflAdvModel() # CReflAdvModel.__init__(obj) is called by # the ReflAdvModel constructor return obj
[docs]class ReflAdvModel(CReflAdvModel, BaseComponent): """ Class that evaluates a ReflAdvModel model. This file was auto-generated from src/sas/models/include/refl_adv.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * n_layers = 1.0 * scale = 1.0 * thick_inter0 = 50.0 [A] * func_inter0 = 0.0 * sld_bottom0 = 2.07e-06 [1/A^(2)] * sld_medium = 1e-06 [1/A^(2)] * background = 0.0 * sld_flat1 = 4e-06 [1/A^(2)] * sld_flat2 = 3.5e-06 [1/A^(2)] * sld_flat3 = 4e-06 [1/A^(2)] * sld_flat4 = 3.5e-06 [1/A^(2)] * sld_flat5 = 4e-06 [1/A^(2)] * sld_flat6 = 3.5e-06 [1/A^(2)] * sld_flat7 = 4e-06 [1/A^(2)] * sld_flat8 = 3.5e-06 [1/A^(2)] * sld_flat9 = 4e-06 [1/A^(2)] * sld_flat10 = 3.5e-06 [1/A^(2)] * thick_inter1 = 50.0 [A] * thick_inter2 = 50.0 [A] * thick_inter3 = 50.0 [A] * thick_inter4 = 50.0 [A] * thick_inter5 = 50.0 [A] * thick_inter6 = 50.0 [A] * thick_inter7 = 50.0 [A] * thick_inter8 = 50.0 [A] * thick_inter9 = 50.0 [A] * thick_inter10 = 50.0 [A] * thick_flat1 = 100.0 [A] * thick_flat2 = 100.0 [A] * thick_flat3 = 100.0 [A] * thick_flat4 = 100.0 [A] * thick_flat5 = 100.0 [A] * thick_flat6 = 100.0 [A] * thick_flat7 = 100.0 [A] * thick_flat8 = 100.0 [A] * thick_flat9 = 100.0 [A] * thick_flat10 = 100.0 [A] * func_inter1 = 0.0 * func_inter2 = 0.0 * func_inter3 = 0.0 * func_inter4 = 0.0 * func_inter5 = 0.0 * func_inter6 = 0.0 * func_inter7 = 0.0 * func_inter8 = 0.0 * func_inter9 = 0.0 * func_inter10 = 0.0 * sldIM_flat1 = 0.0 [1/A^(2)] * sldIM_flat2 = 0.0 [1/A^(2)] * sldIM_flat3 = 0.0 [1/A^(2)] * sldIM_flat4 = 0.0 [1/A^(2)] * sldIM_flat5 = 0.0 [1/A^(2)] * sldIM_flat6 = 0.0 [1/A^(2)] * sldIM_flat7 = 0.0 [1/A^(2)] * sldIM_flat8 = 0.0 [1/A^(2)] * sldIM_flat9 = 0.0 [1/A^(2)] * sldIM_flat10 = 0.0 [1/A^(2)] * nu_inter1 = 2.5 * nu_inter2 = 2.5 * nu_inter3 = 2.5 * nu_inter4 = 2.5 * nu_inter5 = 2.5 * nu_inter6 = 2.5 * nu_inter7 = 2.5 * nu_inter8 = 2.5 * nu_inter9 = 2.5 * nu_inter10 = 2.5 * sldIM_sub0 = 0.0 * sldIM_medium = 0.0 * npts_inter = 21.0 * nu_inter0 = 2.5 """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CReflAdvModel.__init__, (self,)) CReflAdvModel.__init__(self) self.is_multifunc = False ## Name of the model self.name = "ReflAdvModel" ## Model description self.description = """ Calculate neutron reflectivity using the Parratt iterative formula Parameters: background:background scale: scale factor sld_bottom0: the SLD of the substrate sld_medium: the SLD of the incident medium or superstrate sld_flatN: the SLD of the flat region of the N'th layer thick_flatN: the thickness of the flat region of the N'th layer func_interN: the function used to describe the interface of the N'th layer nu_interN: the coefficient for the func_interN thick_interN: the thickness of the interface of the N'th layer Note: the layer number starts to increase from the bottom (substrate) to the top. """ ## Parameter details [units, min, max] self.details = {} self.details['n_layers'] = ['', None, None] self.details['scale'] = ['', None, None] self.details['thick_inter0'] = ['[A]', None, None] self.details['func_inter0'] = ['', None, None] self.details['sld_bottom0'] = ['[1/A^(2)]', None, None] self.details['sld_medium'] = ['[1/A^(2)]', None, None] self.details['background'] = ['', None, None] self.details['sld_flat1'] = ['[1/A^(2)]', None, None] self.details['sld_flat2'] = ['[1/A^(2)]', None, None] self.details['sld_flat3'] = ['[1/A^(2)]', None, None] self.details['sld_flat4'] = ['[1/A^(2)]', None, None] self.details['sld_flat5'] = ['[1/A^(2)]', None, None] self.details['sld_flat6'] = ['[1/A^(2)]', None, None] self.details['sld_flat7'] = ['[1/A^(2)]', None, None] self.details['sld_flat8'] = ['[1/A^(2)]', None, None] self.details['sld_flat9'] = ['[1/A^(2)]', None, None] self.details['sld_flat10'] = ['[1/A^(2)]', None, None] self.details['thick_inter1'] = ['[A]', None, None] self.details['thick_inter2'] = ['[A]', None, None] self.details['thick_inter3'] = ['[A]', None, None] self.details['thick_inter4'] = ['[A]', None, None] self.details['thick_inter5'] = ['[A]', None, None] self.details['thick_inter6'] = ['[A]', None, None] self.details['thick_inter7'] = ['[A]', None, None] self.details['thick_inter8'] = ['[A]', None, None] self.details['thick_inter9'] = ['[A]', None, None] self.details['thick_inter10'] = ['[A]', None, None] self.details['thick_flat1'] = ['[A]', None, None] self.details['thick_flat2'] = ['[A]', None, None] self.details['thick_flat3'] = ['[A]', None, None] self.details['thick_flat4'] = ['[A]', None, None] self.details['thick_flat5'] = ['[A]', None, None] self.details['thick_flat6'] = ['[A]', None, None] self.details['thick_flat7'] = ['[A]', None, None] self.details['thick_flat8'] = ['[A]', None, None] self.details['thick_flat9'] = ['[A]', None, None] self.details['thick_flat10'] = ['[A]', None, None] self.details['func_inter1'] = ['', None, None] self.details['func_inter2'] = ['', None, None] self.details['func_inter3'] = ['', None, None] self.details['func_inter4'] = ['', None, None] self.details['func_inter5'] = ['', None, None] self.details['func_inter6'] = ['', None, None] self.details['func_inter7'] = ['', None, None] self.details['func_inter8'] = ['', None, None] self.details['func_inter9'] = ['', None, None] self.details['func_inter10'] = ['', None, None] self.details['sldIM_flat1'] = ['[1/A^(2)]', None, None] self.details['sldIM_flat2'] = ['[1/A^(2)]', None, None] self.details['sldIM_flat3'] = ['[1/A^(2)]', None, None] self.details['sldIM_flat4'] = ['[1/A^(2)]', None, None] self.details['sldIM_flat5'] = ['[1/A^(2)]', None, None] self.details['sldIM_flat6'] = ['[1/A^(2)]', None, None] self.details['sldIM_flat7'] = ['[1/A^(2)]', None, None] self.details['sldIM_flat8'] = ['[1/A^(2)]', None, None] self.details['sldIM_flat9'] = ['[1/A^(2)]', None, None] self.details['sldIM_flat10'] = ['[1/A^(2)]', None, None] self.details['nu_inter1'] = ['', None, None] self.details['nu_inter2'] = ['', None, None] self.details['nu_inter3'] = ['', None, None] self.details['nu_inter4'] = ['', None, None] self.details['nu_inter5'] = ['', None, None] self.details['nu_inter6'] = ['', None, None] self.details['nu_inter7'] = ['', None, None] self.details['nu_inter8'] = ['', None, None] self.details['nu_inter9'] = ['', None, None] self.details['nu_inter10'] = ['', None, None] self.details['sldIM_sub0'] = ['', None, None] self.details['sldIM_medium'] = ['', None, None] self.details['npts_inter'] = ['', None, None] self.details['nu_inter0'] = ['', None, None] ## fittable parameters self.fixed = [] ## non-fittable parameters self.non_fittable = ['n_layers', 'func_inter0', 'func_inter1', 'func_inter2', 'func_inter3', 'func_inter4', 'func_inter5', 'func_inter5', 'func_inter7', 'func_inter8', 'func_inter9', 'func_inter10'] ## parameters with orientation self.orientation_params = [] ## parameters with magnetism self.magnetic_params = [] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_ReflAdvModel, tuple(), state, None, None)
[docs] def clone(self): """ Return a identical copy of self """ return self._clone(ReflAdvModel())
[docs] def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CReflAdvModel.run(self, x)
[docs] def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CReflAdvModel.runXY(self, x)
[docs] def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CReflAdvModel.evalDistribution(self, x)
[docs] def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CReflAdvModel.calculate_ER(self)
[docs] def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CReflAdvModel.calculate_VR(self)
[docs] def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CReflAdvModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file