Source code for sas.models.qsmearing

"""
    Handle Q smearing
"""
#####################################################################
#This software was developed by the University of Tennessee as part of the
#Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
#project funded by the US National Science Foundation. 
#See the license text in license.txt
#copyright 2008, University of Tennessee
######################################################################
import numpy
import math
import logging
import sys
import sas.models.sas_extension.smearer as smearer
from sas.models.smearing_2d import Smearer2D

[docs]def smear_selection(data1D, model = None): """ Creates the right type of smearer according to the data. The canSAS format has a rule that either slit smearing data OR resolution smearing data is available. For the present purpose, we choose the one that has none-zero data. If both slit and resolution smearing arrays are filled with good data (which should not happen), then we choose the resolution smearing data. :param data1D: Data1D object :param model: sas.model instance """ # Sanity check. If we are not dealing with a SAS Data1D # object, just return None if data1D.__class__.__name__ not in ['Data1D', 'Theory1D']: if data1D == None: return None elif data1D.dqx_data == None or data1D.dqy_data == None: return None return Smearer2D(data1D) if not hasattr(data1D, "dx") and not hasattr(data1D, "dxl")\ and not hasattr(data1D, "dxw"): return None # Look for resolution smearing data _found_resolution = False if data1D.dx is not None and len(data1D.dx) == len(data1D.x): # Check that we have non-zero data if data1D.dx[0] > 0.0: _found_resolution = True #print "_found_resolution",_found_resolution #print "data1D.dx[0]",data1D.dx[0],data1D.dxl[0] # If we found resolution smearing data, return a QSmearer if _found_resolution == True: return QSmearer(data1D, model) # Look for slit smearing data _found_slit = False if data1D.dxl is not None and len(data1D.dxl) == len(data1D.x) \ and data1D.dxw is not None and len(data1D.dxw) == len(data1D.x): # Check that we have non-zero data if data1D.dxl[0] > 0.0 or data1D.dxw[0] > 0.0: _found_slit = True # Sanity check: all data should be the same as a function of Q for item in data1D.dxl: if data1D.dxl[0] != item: _found_resolution = False break for item in data1D.dxw: if data1D.dxw[0] != item: _found_resolution = False break # If we found slit smearing data, return a slit smearer if _found_slit == True: return SlitSmearer(data1D, model) return None
class _BaseSmearer(object): """ Base class for smearers """ def __init__(self): self.nbins = 0 self.nbins_low = 0 self.nbins_high = 0 self._weights = None ## Internal flag to keep track of C++ smearer initialization self._init_complete = False self._smearer = None self.model = None self.min = None self.max = None self.qvalues = [] def __deepcopy__(self, memo=None): """ Return a valid copy of self. Avoid copying the _smearer C object and force a matrix recompute when the copy is used. """ result = _BaseSmearer() result.nbins = self.nbins return result def _compute_matrix(self): """ Place holder for matrix computation """ return NotImplemented def get_unsmeared_range(self, q_min=None, q_max=None): """ Place holder for method returning unsmeared range """ return NotImplemented def get_bin_range(self, q_min=None, q_max=None): """ :param q_min: minimum q-value to smear :param q_max: maximum q-value to smear """ # If this is the first time we call for smearing, # initialize the C++ smearer object first if not self._init_complete: self._initialize_smearer() if q_min == None: q_min = self.min if q_max == None: q_max = self.max _qmin_unsmeared, _qmax_unsmeared = self.get_unsmeared_range(q_min, q_max) _first_bin = None _last_bin = None #step = (self.max - self.min) / (self.nbins - 1.0) # Find the first and last bin number in all extrapolated and real data try: for i in range(self.nbins): q_i = smearer.get_q(self._smearer, i) if (q_i >= _qmin_unsmeared) and (q_i <= _qmax_unsmeared): # Identify first and last bin if _first_bin is None: _first_bin = i else: _last_bin = i except: msg = "_BaseSmearer.get_bin_range: " msg += " error getting range\n %s" % sys.exc_value raise RuntimeError, msg # Find the first and last bin number only in the real data _first_bin, _last_bin = self._get_unextrapolated_bin( \ _first_bin, _last_bin) return _first_bin, _last_bin def __call__(self, iq_in, first_bin = 0, last_bin = None): """ Perform smearing """ # If this is the first time we call for smearing, # initialize the C++ smearer object first if not self._init_complete: self._initialize_smearer() if last_bin is None or last_bin >= len(iq_in): last_bin = len(iq_in) - 1 # Check that the first bin is positive if first_bin < 0: first_bin = 0 # With a model given, compute I for the extrapolated points and append # to the iq_in iq_in_temp = iq_in if self.model != None: temp_first, temp_last = self._get_extrapolated_bin( \ first_bin, last_bin) if self.nbins_low > 0: iq_in_low = self.model.evalDistribution( \ numpy.fabs(self.qvalues[0:self.nbins_low])) iq_in_high = self.model.evalDistribution( \ self.qvalues[(len(self.qvalues) - \ self.nbins_high - 1):]) # Todo: find out who is sending iq[last_poin] = 0. if iq_in[len(iq_in) - 1] == 0: iq_in[len(iq_in) - 1] = iq_in_high[0] # Append the extrapolated points to the data points if self.nbins_low > 0: iq_in_temp = numpy.append(iq_in_low, iq_in) if self.nbins_high > 0: iq_in_temp = numpy.append(iq_in_temp, iq_in_high[1:]) else: temp_first = first_bin temp_last = last_bin #iq_in_temp = iq_in # Sanity check if len(iq_in_temp) != self.nbins: msg = "Invalid I(q) vector: inconsistent array " msg += " length %d != %s" % (len(iq_in_temp), str(self.nbins)) raise RuntimeError, msg # Storage for smeared I(q) iq_out = numpy.zeros(self.nbins) smear_output = smearer.smear(self._smearer, iq_in_temp, iq_out, #0, self.nbins - 1) temp_first, temp_last) #first_bin, last_bin) if smear_output < 0: msg = "_BaseSmearer: could not smear, code = %g" % smear_output raise RuntimeError, msg temp_first = first_bin + self.nbins_low temp_last = self.nbins - self.nbins_high out = iq_out[temp_first: temp_last] return out def _initialize_smearer(self): """ Place holder for initializing data smearer """ return NotImplemented def _get_unextrapolated_bin(self, first_bin = 0, last_bin = 0): """ Get unextrapolated first bin and the last bin : param first_bin: extrapolated first_bin : param last_bin: extrapolated last_bin : return fist_bin, last_bin: unextrapolated first and last bin """ # For first bin if first_bin <= self.nbins_low: first_bin = 0 else: first_bin = first_bin - self.nbins_low # For last bin if last_bin >= (self.nbins - self.nbins_high): last_bin = self.nbins - (self.nbins_high + self.nbins_low + 1) elif last_bin >= self.nbins_low: last_bin = last_bin - self.nbins_low else: last_bin = 0 return first_bin, last_bin def _get_extrapolated_bin(self, first_bin = 0, last_bin = 0): """ Get extrapolated first bin and the last bin : param first_bin: unextrapolated first_bin : param last_bin: unextrapolated last_bin : return first_bin, last_bin: extrapolated first and last bin """ # For the first bin # In the case that needs low extrapolation data first_bin = 0 # For last bin if last_bin >= self.nbins - (self.nbins_high + self.nbins_low + 1): # In the case that needs higher q extrapolation data last_bin = self.nbins - 1 else: # In the case that doesn't need higher q extrapolation data last_bin += self.nbins_low return first_bin, last_bin class _SlitSmearer(_BaseSmearer): """ Slit smearing for I(q) array """ def __init__(self, nbins=None, width=None, height=None, min=None, max=None): """ Initialization :param iq: I(q) array [cm-1] :param width: slit width [A-1] :param height: slit height [A-1] :param min: Q_min [A-1] :param max: Q_max [A-1] """ _BaseSmearer.__init__(self) ## Slit width in Q units self.width = width ## Slit height in Q units self.height = height ## Q_min (Min Q-value for I(q)) self.min = min ## Q_max (Max Q_value for I(q)) self.max = max ## Number of Q bins self.nbins = nbins ## Number of points used in the smearing computation self.npts = 3000 ## Smearing matrix self._weights = None self.qvalues = None def _initialize_smearer(self): """ Initialize the C++ smearer object. This method HAS to be called before smearing """ #self._smearer = smearer.new_slit_smearer(self.width, # self.height, self.min, self.max, self.nbins) self._smearer = smearer.new_slit_smearer_with_q(self.width, self.height, self.qvalues) self._init_complete = True def get_unsmeared_range(self, q_min, q_max): """ Determine the range needed in unsmeared-Q to cover the smeared Q range """ # Range used for input to smearing _qmin_unsmeared = q_min _qmax_unsmeared = q_max try: _qmin_unsmeared = self.min _qmax_unsmeared = self.max except: logging.error("_SlitSmearer.get_bin_range: %s" % sys.exc_value) return _qmin_unsmeared, _qmax_unsmeared
[docs]class SlitSmearer(_SlitSmearer): """ Adaptor for slit smearing class and SAS data """ def __init__(self, data1D, model = None): """ Assumption: equally spaced bins of increasing q-values. :param data1D: data used to set the smearing parameters """ # Initialization from parent class super(SlitSmearer, self).__init__() ## Slit width self.width = 0 self.nbins_low = 0 self.nbins_high = 0 self.model = model if data1D.dxw is not None and len(data1D.dxw) == len(data1D.x): self.width = data1D.dxw[0] # Sanity check for value in data1D.dxw: if value != self.width: msg = "Slit smearing parameters must " msg += " be the same for all data" raise RuntimeError, msg ## Slit height self.height = 0 if data1D.dxl is not None and len(data1D.dxl) == len(data1D.x): self.height = data1D.dxl[0] # Sanity check for value in data1D.dxl: if value != self.height: msg = "Slit smearing parameters must be" msg += " the same for all data" raise RuntimeError, msg # If a model is given, get the q extrapolation if self.model == None: data1d_x = data1D.x else: # Take larger sigma if self.height > self.width: # The denominator (2.0) covers all the possible w^2 + h^2 range sigma_in = data1D.dxl / 2.0 elif self.width > 0: sigma_in = data1D.dxw / 2.0 else: sigma_in = [] self.nbins_low, self.nbins_high, _, data1d_x = \ get_qextrapolate(sigma_in, data1D.x) ## Number of Q bins self.nbins = len(data1d_x) ## Minimum Q self.min = min(data1d_x) ## Maximum self.max = max(data1d_x) ## Q-values self.qvalues = data1d_x
class _QSmearer(_BaseSmearer): """ Perform Gaussian Q smearing """ def __init__(self, nbins=None, width=None, min=None, max=None): """ Initialization :param nbins: number of Q bins :param width: array standard deviation in Q [A-1] :param min: Q_min [A-1] :param max: Q_max [A-1] """ _BaseSmearer.__init__(self) ## Standard deviation in Q [A-1] self.width = width ## Q_min (Min Q-value for I(q)) self.min = min ## Q_max (Max Q_value for I(q)) self.max = max ## Number of Q bins self.nbins = nbins ## Smearing matrix self._weights = None self.qvalues = None def _initialize_smearer(self): """ Initialize the C++ smearer object. This method HAS to be called before smearing """ #self._smearer = smearer.new_q_smearer(numpy.asarray(self.width), # self.min, self.max, self.nbins) self._smearer = smearer.new_q_smearer_with_q(numpy.asarray(self.width), self.qvalues) self._init_complete = True def get_unsmeared_range(self, q_min, q_max): """ Determine the range needed in unsmeared-Q to cover the smeared Q range Take 3 sigmas as the offset between smeared and unsmeared space """ # Range used for input to smearing _qmin_unsmeared = q_min _qmax_unsmeared = q_max try: offset = 3.0 * max(self.width) _qmin_unsmeared = self.min#max([self.min, q_min - offset]) _qmax_unsmeared = self.max#min([self.max, q_max + offset]) except: logging.error("_QSmearer.get_bin_range: %s" % sys.exc_value) return _qmin_unsmeared, _qmax_unsmeared
[docs]class QSmearer(_QSmearer): """ Adaptor for Gaussian Q smearing class and SAS data """ def __init__(self, data1D, model = None): """ Assumption: equally spaced bins of increasing q-values. :param data1D: data used to set the smearing parameters """ # Initialization from parent class super(QSmearer, self).__init__() data1d_x = [] self.nbins_low = 0 self.nbins_high = 0 self.model = model ## Resolution #self.width = numpy.zeros(len(data1D.x)) if data1D.dx is not None and len(data1D.dx) == len(data1D.x): self.width = data1D.dx if self.model == None: data1d_x = data1D.x else: self.nbins_low, self.nbins_high, self.width, data1d_x = \ get_qextrapolate(self.width, data1D.x) ## Number of Q bins self.nbins = len(data1d_x) ## Minimum Q self.min = min(data1d_x) ## Maximum self.max = max(data1d_x) ## Q-values self.qvalues = data1d_x
[docs]def get_qextrapolate(width, data_x): """ Make fake data_x points extrapolated outside of the data_x points :param width: array of std of q resolution :param Data1D.x: Data1D.x array :return new_width, data_x_ext: extrapolated width array and x array :assumption1: data_x is ordered from lower q to higher q :assumption2: len(data) = len(width) :assumption3: the distance between the data points is more compact than the size of width :Todo1: Make sure that the assumptions are correct for Data1D :Todo2: This fixes the edge problem in Qsmearer but still needs to make smearer interface """ # Length of the width length = len(width) width_low = math.fabs(width[0]) width_high = math.fabs(width[length -1]) nbins_low = 0.0 nbins_high = 0.0 # Compare width(dQ) to the data bin size and take smaller one as the bin # size of the extrapolation; this will correct some weird behavior # at the edge: This method was out (commented) # because it becomes very expansive when # bin size is very small comparing to the width. # Now on, we will just give the bin size of the extrapolated points # based on the width. # Find bin sizes #bin_size_low = math.fabs(data_x[1] - data_x[0]) #bin_size_high = math.fabs(data_x[length - 1] - data_x[length - 2]) # Let's set the bin size 1/3 of the width(sigma), it is good as long as # the scattering is monotonous. #if width_low < (bin_size_low): bin_size_low = width_low / 10.0 #if width_high < (bin_size_high): bin_size_high = width_high / 10.0 # Number of q points required below the 1st data point in order to extend # them 3 times of the width (std) if width_low > 0.0: nbins_low = math.ceil(3.0 * width_low / bin_size_low) # Number of q points required above the last data point if width_high > 0.0: nbins_high = math.ceil(3.0 * width_high / bin_size_high) # Make null q points extra_low = numpy.zeros(nbins_low) extra_high = numpy.zeros(nbins_high) # Give extrapolated values ind = 0 qvalue = data_x[0] - bin_size_low #if qvalue > 0: while(ind < nbins_low): extra_low[nbins_low - (ind + 1)] = qvalue qvalue -= bin_size_low ind += 1 #if qvalue <= 0: # break # Redefine nbins_low nbins_low = ind # Reset ind for another extrapolation ind = 0 qvalue = data_x[length -1] + bin_size_high while(ind < nbins_high): extra_high[ind] = qvalue qvalue += bin_size_high ind += 1 # Make a new qx array if nbins_low > 0: data_x_ext = numpy.append(extra_low, data_x) else: data_x_ext = data_x data_x_ext = numpy.append(data_x_ext, extra_high) # Redefine extra_low and high based on corrected nbins # And note that it is not necessary for extra_width to be a non-zero if nbins_low > 0: extra_low = numpy.zeros(nbins_low) extra_high = numpy.zeros(nbins_high) # Make new width array new_width = numpy.append(extra_low, width) new_width = numpy.append(new_width, extra_high) # nbins corrections due to the negative q value nbins_low = nbins_low - len(data_x_ext[data_x_ext <= 0]) return nbins_low, nbins_high, \ new_width[data_x_ext > 0], data_x_ext[data_x_ext > 0]