Source code for sas.plottools.fitDialog

import wx
from plottables import Theory1D
import math
import numpy
import fittings
import transform
import sys

#Linear fit panel size 
if sys.platform.count("win32") > 0:
    FONT_VARIANT = 0
    PNL_WIDTH = 450
    PNL_HEIGHT = 500
else:
    FONT_VARIANT = 1
    PNL_WIDTH = 500
    PNL_HEIGHT = 500
RG_ON = True    
    
[docs]def format_number(value, high=False): """ Return a float in a standardized, human-readable formatted string """ try: value = float(value) except: output = "NaN" return output.lstrip().rstrip() if high: output = "%-6.4g" % value else: output = "%-5.3g" % value return output.lstrip().rstrip()
[docs]class LinearFit(wx.Dialog): def __init__(self, parent, plottable, push_data, transform, title): """ Dialog window pops- up when select Linear fit on Context menu Displays fitting parameters """ wx.Dialog.__init__(self, parent, title=title, size=(PNL_WIDTH, 350)) self.parent = parent self.transform = transform #Font self.SetWindowVariant(variant=FONT_VARIANT) # Registered owner for close event self._registered_close = None #dialog panel self call function to plot the fitting function self.push_data = push_data #dialog self plottable self.plottable = plottable self.rg_on = False # Receive transformations of x and y self.xLabel, self.yLabel, self.Avalue, self.Bvalue,\ self.ErrAvalue, self.ErrBvalue, self.Chivalue = self.transform() #Dialog interface vbox = wx.BoxSizer(wx.VERTICAL) sizer = wx.GridBagSizer(5, 5) _BOX_WIDTH = 100 self.tcA = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, 20)) self.tcA.SetToolTipString("Fit value for the slope parameter.") self.tcErrA = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, 20)) self.tcErrA.SetToolTipString("Error on the slope parameter.") self.tcB = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, 20)) self.tcA.SetToolTipString("Fit value for the constant parameter.") self.tcErrB = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, 20)) self.tcErrB.SetToolTipString("Error on the constant parameter.") self.tcChi = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, 20)) self.tcChi.SetToolTipString("Chi^2 over degrees of freedom.") self.xminFit = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, 20)) msg = "Enter the minimum value on " msg += "the x-axis to be included in the fit." self.xminFit.SetToolTipString(msg) self.xmaxFit = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, 20)) msg = "Enter the maximum value on " msg += " the x-axis to be included in the fit." self.xmaxFit.SetToolTipString(msg) self.initXmin = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, 20)) msg = "Minimum value on the x-axis for the plotted data." self.initXmin.SetToolTipString(msg) self.initXmax = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, 20)) msg = "Maximum value on the x-axis for the plotted data." self.initXmax.SetToolTipString(msg) # Make the info box not editable #_BACKGROUND_COLOR = '#ffdf85' _BACKGROUND_COLOR = self.GetBackgroundColour() self.initXmin.SetEditable(False) self.initXmin.SetBackgroundColour(_BACKGROUND_COLOR) self.initXmax.SetEditable(False) self.initXmax.SetBackgroundColour(_BACKGROUND_COLOR) # Buttons on the bottom self.bg_on = False self.static_line_1 = wx.StaticLine(self, -1) self.btFit = wx.Button(self, -1, 'Fit') self.btFit.Bind(wx.EVT_BUTTON, self._onFit) self.btFit.SetToolTipString("Perform fit.") self.btClose =wx.Button(self, wx.ID_CANCEL, 'Close') self.btClose.Bind(wx.EVT_BUTTON, self._on_close) if RG_ON: if (self.yLabel == "ln(y)" or self.yLabel == "ln(y*x)") and \ (self.xLabel == "x^(2)"): self.rg_on = True if (self.xLabel == "x^(4)") and (self.yLabel == "y*x^(4)"): self.bg_on = True # Intro explanation = "Perform fit for y(x) = ax + b" if self.bg_on: param_a = 'Background (= Parameter a)' else: param_a = 'Parameter a' vbox.Add(sizer) ix = 0 iy = 1 sizer.Add(wx.StaticText(self, -1, explanation), (iy, ix), (1, 1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 15) iy += 2 sizer.Add(wx.StaticText(self, -1, param_a), (iy, ix), (1, 1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 15) ix += 1 sizer.Add(self.tcA,(iy, ix),(1, 1), wx.EXPAND|wx.ADJUST_MINSIZE, 0) ix += 1 sizer.Add(wx.StaticText(self, -1, '+/-'), (iy, ix), (1, 1), wx.EXPAND|wx.ADJUST_MINSIZE, 0) ix += 1 sizer.Add(self.tcErrA, (iy, ix), (1, 1), wx.EXPAND|wx.ADJUST_MINSIZE, 0) iy += 1 ix = 0 sizer.Add(wx.StaticText(self, -1, 'Parameter b'), (iy, ix),(1, 1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 15) ix += 1 sizer.Add(self.tcB, (iy, ix),(1,1), wx.EXPAND|wx.ADJUST_MINSIZE, 0) ix += 1 sizer.Add(wx.StaticText(self, -1, '+/-'), (iy, ix), (1, 1), wx.EXPAND|wx.ADJUST_MINSIZE, 0) ix += 1 sizer.Add(self.tcErrB, (iy, ix), (1, 1), wx.EXPAND|wx.ADJUST_MINSIZE, 0) iy += 1 ix = 0 sizer.Add(wx.StaticText(self, -1, 'Chi2/dof'), (iy, ix), (1, 1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 15) ix += 1 sizer.Add(self.tcChi, (iy, ix),(1,1), wx.EXPAND|wx.ADJUST_MINSIZE, 0) #sizer.Add(wx.StaticLine(self, -1), 0, wx.EXPAND, 0) iy += 2 ix = 1 sizer.Add(wx.StaticText(self, -1, 'Min'), (iy, ix), (1, 1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 0) ix += 2 sizer.Add(wx.StaticText(self, -1, 'Max'), (iy, ix), (1, 1), wx.EXPAND|wx.ADJUST_MINSIZE, 0) iy += 1 ix = 0 sizer.Add(wx.StaticText(self, -1, 'Maximum range (linear scale)'), (iy, ix),(1,1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 15) ix += 1 sizer.Add(self.initXmin, (iy, ix), (1,1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 0) ix += 2 sizer.Add(self.initXmax, (iy, ix), (1,1), wx.EXPAND|wx.ADJUST_MINSIZE, 0) iy += 1 ix = 0 sizer.Add(wx.StaticText(self, -1, 'Fit range of ' + self.xLabel), (iy, ix), (1, 1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 15) ix += 1 sizer.Add(self.xminFit, (iy, ix), (1, 1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 0) ix += 2 sizer.Add(self.xmaxFit, (iy, ix), (1,1), wx.EXPAND|wx.ADJUST_MINSIZE, 0) if self.rg_on: self.SetSize((PNL_WIDTH, PNL_HEIGHT)) I0_stxt = wx.StaticText(self, -1, 'I(q=0)') self.I0_tctr = wx.TextCtrl(self, -1, '') self.I0_tctr.SetEditable(False) self.I0_tctr.SetBackgroundColour(_BACKGROUND_COLOR) self.I0err_tctr = wx.TextCtrl(self, -1, '') self.I0err_tctr.SetEditable(False) self.I0err_tctr.SetBackgroundColour(_BACKGROUND_COLOR) Rg_stxt = wx.StaticText(self, -1, 'Rg [A]') Rg_stxt.Show(self.yLabel == "ln(y)" ) self.Rg_tctr = wx.TextCtrl(self, -1, '') self.Rg_tctr.SetEditable(False) self.Rg_tctr.SetBackgroundColour(_BACKGROUND_COLOR) self.Rg_tctr.Show(self.yLabel == "ln(y)" ) self.Rgerr_tctr = wx.TextCtrl(self, -1, '') self.Rgerr_tctr.SetEditable(False) self.Rgerr_tctr.SetBackgroundColour(_BACKGROUND_COLOR) self.Rgerr_tctr.Show(self.yLabel == "ln(y)" ) self.Rgerr_pm = wx.StaticText(self, -1, '+/-') self.Rgerr_pm.Show(self.yLabel == "ln(y)" ) Diameter_stxt = wx.StaticText(self, -1, 'Rod Diameter [A]') Diameter_stxt.Show(self.yLabel == "ln(y*x)") self.Diameter_tctr = wx.TextCtrl(self, -1, '') self.Diameter_tctr.SetEditable(False) self.Diameter_tctr.SetBackgroundColour(_BACKGROUND_COLOR) self.Diameter_tctr.Show(self.yLabel == "ln(y*x)") self.Diameter_pm = wx.StaticText(self, -1, '+/-') self.Diameter_pm.Show(self.yLabel == "ln(y*x)") self.Diametererr_tctr = wx.TextCtrl(self, -1, '') self.Diametererr_tctr.SetEditable(False) self.Diametererr_tctr.SetBackgroundColour(_BACKGROUND_COLOR) self.Diametererr_tctr.Show(self.yLabel == "ln(y*x)") RgQmin_stxt = wx.StaticText(self, -1, 'Rg*Qmin') self.RgQmin_tctr = wx.TextCtrl(self, -1, '') self.RgQmin_tctr.SetEditable(False) self.RgQmin_tctr.SetBackgroundColour(_BACKGROUND_COLOR) RgQmax_stxt = wx.StaticText(self, -1, 'Rg*Qmax') self.RgQmax_tctr = wx.TextCtrl(self, -1, '') self.RgQmax_tctr.SetEditable(False) self.RgQmax_tctr.SetBackgroundColour(_BACKGROUND_COLOR) iy += 2 ix = 0 sizer.Add(I0_stxt, (iy, ix), (1,1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 15) ix += 1 sizer.Add(self.I0_tctr, (iy, ix), (1,1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 0) ix += 1 sizer.Add(wx.StaticText(self, -1, '+/-'), (iy, ix), (1, 1), wx.EXPAND|wx.ADJUST_MINSIZE, 0) ix += 1 sizer.Add(self.I0err_tctr, (iy, ix), (1,1), wx.EXPAND|wx.ADJUST_MINSIZE, 0) iy += 1 ix = 0 sizer.Add(Rg_stxt, (iy, ix),(1,1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 15) ix += 1 sizer.Add(self.Rg_tctr, (iy, ix), (1,1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 0) ix += 1 sizer.Add(self.Rgerr_pm, (iy, ix), (1, 1), wx.EXPAND|wx.ADJUST_MINSIZE, 0) ix += 1 sizer.Add(self.Rgerr_tctr, (iy, ix), (1,1), wx.EXPAND|wx.ADJUST_MINSIZE, 0) iy += 1 ix = 0 sizer.Add(Diameter_stxt, (iy, ix),(1,1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 15) ix += 1 sizer.Add(self.Diameter_tctr, (iy, ix), (1,1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 0) ix += 1 sizer.Add(self.Diameter_pm, (iy, ix), (1, 1), wx.EXPAND|wx.ADJUST_MINSIZE, 0) ix += 1 sizer.Add(self.Diametererr_tctr, (iy, ix), (1,1), wx.EXPAND|wx.ADJUST_MINSIZE, 0) iy += 1 ix = 0 sizer.Add(RgQmin_stxt, (iy, ix),(1,1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 15) ix += 1 sizer.Add(self.RgQmin_tctr, (iy, ix), (1,1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 0) iy += 1 ix = 0 sizer.Add(RgQmax_stxt, (iy, ix),(1,1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 15) ix += 1 sizer.Add(self.RgQmax_tctr, (iy, ix), (1,1), wx.LEFT|wx.EXPAND|wx.ADJUST_MINSIZE, 0) iy += 1 ix = 1 vbox.Add(self.static_line_1, 0, wx.EXPAND, 0) sizer_button = wx.BoxSizer(wx.HORIZONTAL) sizer_button.Add((20, 20), 1, wx.EXPAND|wx.ADJUST_MINSIZE, 0) sizer_button.Add(self.btFit, 0, wx.LEFT|wx.RIGHT|wx.ADJUST_MINSIZE, 10) sizer_button.Add(self.btClose, 0, wx.LEFT|wx.RIGHT|wx.ADJUST_MINSIZE, 10) vbox.Add(sizer_button, 0, wx.EXPAND|wx.BOTTOM|wx.TOP, 10) sizer.Add(self.btFit, (iy, ix), (1,1), wx.LEFT|wx.ADJUST_MINSIZE, 0) #panel.SetSizer(sizer) self.SetSizer(vbox) self.Centre() # Receives the type of model for the fitting from LineModel import LineModel self.model = LineModel() #Display the fittings values self.default_A = self.model.getParam('A') self.default_B = self.model.getParam('B') self.cstA = fittings.Parameter(self.model, 'A', self.default_A) self.cstB = fittings.Parameter(self.model, 'B', self.default_B) # Set default value of parameter in fit dialog if self.Avalue == None: self.tcA.SetValue(format_number(self.default_A)) else: self.tcA.SetLabel(format_number(self.Avalue)) if self.Bvalue == None: self.tcB.SetValue(format_number(self.default_B)) else: self.tcB.SetLabel(format_number(self.Bvalue)) if self.ErrAvalue == None: self.tcErrA.SetLabel(format_number(0.0)) else: self.tcErrA.SetLabel(format_number(self.ErrAvalue)) if self.ErrBvalue == None: self.tcErrB.SetLabel(format_number(0.0)) else: self.tcErrB.SetLabel(format_number(self.ErrBvalue)) if self.Chivalue == None: self.tcChi.SetLabel(format_number(0.0)) else: self.tcChi.SetLabel(format_number(self.Chivalue)) if self.plottable.x != []: #store the values of View in self.x,self.y,self.dx,self.dy self.x, self.y, self.dx, \ self.dy = self.plottable.returnValuesOfView() try: self.mini = self.floatForwardTransform(min(self.x)) except: self.mini = "Invalid" try: self.maxi = self.floatForwardTransform(max(self.x)) except: self.maxi = "Invalid" self.initXmin.SetValue(format_number(min(self.plottable.x))) self.initXmax.SetValue(format_number(max(self.plottable.x))) self.mini = min(self.x) self.maxi = max(self.x) self.xminFit.SetValue(format_number(self.mini)) self.xmaxFit.SetValue(format_number(self.maxi))
[docs] def register_close(self, owner): """ Method to register the close event to a parent window that needs notification when the dialog is closed :param owner: parent window """ self._registered_close = owner
def _on_close(self, event): """ Close event. Notify registered owner if available. """ event.Skip() if self._registered_close is not None: self._registered_close() def _onFit(self, event): """ Performs the fit. Receive an event when clicking on the button Fit.Computes chisqr , A and B parameters of the best linear fit y=Ax +B Push a plottable to """ tempx = [] tempy = [] tempdy = [] # Check if View contains a x array .we online fit when x exits # makes transformation for y as a line to fit if self.x != []: if(self.checkFitValues(self.xminFit) == True): #Check if the field of Fit Dialog contain values # and use the x max and min of the user #xminView,xmaxView = self._checkVal(self.xminFit.GetValue(), #self.xmaxFit.GetValue()) if not self._checkVal(self.xminFit, self.xmaxFit): return xminView = float(self.xminFit.GetValue()) xmaxView = float(self.xmaxFit.GetValue()) #xmin = self.floatInvTransform(xminView) #xmax = self.floatInvTransform(xmaxView) xmin = xminView xmax = xmaxView # Store the transformed values of view x, y,dy # in variables before the fit if self.yLabel.lower() == "log10(y)": if (self.xLabel.lower() == "log10(x)"): for i in range(len(self.x)): if self.x[i] >= math.log10(xmin): tempy.append(math.log10(self.y[i])) tempdy.append(transform.errToLogX(self.y[i], 0, self.dy[i], 0)) else: for i in range(len(self.y)): tempy.append(math.log10(self.y[i])) tempdy.append(transform.errToLogX(self.y[i], 0, self.dy[i], 0)) else: tempy = self.y tempdy = self.dy if (self.xLabel.lower() == "log10(x)"): for x_i in self.x: if x_i >= math.log10(xmin): tempx.append(math.log10(x_i)) else: tempx = self.x #Find the fitting parameters # Always use the same defaults, so that fit history #doesn't play a role! self.cstA = fittings.Parameter(self.model, 'A', self.default_A) self.cstB = fittings.Parameter(self.model, 'B', self.default_B) if (self.xLabel.lower() == "log10(x)"): tempdy = numpy.asarray(tempdy) tempdy[tempdy == 0] = 1 chisqr, out, cov = fittings.sasfit(self.model, [self.cstA, self.cstB], tempx, tempy, tempdy, math.log10(xmin), math.log10(xmax)) else: tempdy = numpy.asarray(tempdy) tempdy[tempdy == 0] = 1 chisqr, out, cov = fittings.sasfit(self.model, [self.cstA, self.cstB], tempx, tempy, tempdy, xminView, xmaxView) # Use chi2/dof if len(tempx) > 0: chisqr = chisqr/len(tempx) #Check that cov and out are iterable before displaying them if cov == None: errA = 0.0 errB = 0.0 else: errA = math.sqrt(cov[0][0]) errB = math.sqrt(cov[1][1]) if out == None: cstA = 0.0 cstB = 0.0 else: cstA = out[0] cstB = out[1] # Reset model with the right values of A and B self.model.setParam('A', float(cstA)) self.model.setParam('B', float(cstB)) tempx = [] tempy = [] y_model = 0.0 # load tempy with the minimum transformation if self.xLabel == "log10(x)": y_model = self.model.run(math.log10(xmin)) tempx.append(xmin) else: y_model = self.model.run(xminView) tempx.append(xminView) if self.yLabel == "log10(y)": tempy.append(math.pow(10, y_model)) else: tempy.append(y_model) # load tempy with the maximum transformation if self.xLabel == "log10(x)": y_model = self.model.run(math.log10(xmax)) tempx.append(xmax) else: y_model = self.model.run(xmaxView) tempx.append(xmaxView) if self.yLabel == "log10(y)": tempy.append(math.pow(10, y_model)) else: tempy.append(y_model) #Set the fit parameter display when FitDialog is opened again self.Avalue = cstB self.Bvalue = cstA self.ErrAvalue = errA self.ErrBvalue = errB self.Chivalue = chisqr self.push_data(tempx, tempy, xminView, xmaxView, xmin, xmax, self._ongetValues()) # Display the fitting value on the Fit Dialog self._onsetValues(cstB, cstA, errA, errB, chisqr) def _onsetValues(self, cstA, cstB, errA, errB, Chi): """ Display the value on fit Dialog """ rg = None self.tcA.SetValue(format_number(cstA)) self.tcB.SetValue(format_number(cstB)) self.tcErrA.SetValue(format_number(errA)) self.tcErrB.SetValue(format_number(errB)) self.tcChi.SetValue(format_number(Chi)) if self.rg_on: if self.Rg_tctr.IsShown(): rg = numpy.sqrt(-3 * float(cstA)) value = format_number(rg) self.Rg_tctr.SetValue(value) if self.I0_tctr.IsShown(): val = numpy.exp(cstB) self.I0_tctr.SetValue(format_number(val)) if self.Rgerr_tctr.IsShown(): if rg != None and rg != 0: value = format_number(3 * float(cstA) / (2 * rg)) else: value ='' self.Rgerr_tctr.SetValue(value) if self.I0err_tctr.IsShown(): val = numpy.abs(numpy.exp(cstB) - numpy.exp(cstB + errB)) self.I0err_tctr.SetValue(format_number(val)) if self.Diameter_tctr.IsShown(): rg = 4 * numpy.sqrt(-float(cstA)) value = format_number(rg) self.Diameter_tctr.SetValue(value) if self.Diametererr_tctr.IsShown(): if rg != None and rg != 0: value = format_number(8 * float(cstA) / rg) else: value ='' self.Diametererr_tctr.SetValue(value) if self.RgQmin_tctr.IsShown(): value = format_number(rg * self.mini) self.RgQmin_tctr.SetValue(value) if self.RgQmax_tctr.IsShown(): value = format_number(rg * self.maxi) self.RgQmax_tctr.SetValue(value) def _ongetValues(self): """ Display the value on fit Dialog """ return self.Avalue, self.Bvalue, self.ErrAvalue, \ self.ErrBvalue, self.Chivalue def _checkVal(self, usermin, usermax): """ Ensure that fields parameter contains a min and a max value within x min and x max range """ self.mini = float(self.xminFit.GetValue()) self.maxi = float(self.xmaxFit.GetValue()) flag = True try: mini = float(usermin.GetValue()) maxi = float(usermax.GetValue()) if mini < maxi: usermin.SetBackgroundColour(wx.WHITE) usermin.Refresh() else: flag = False usermin.SetBackgroundColour("pink") usermin.Refresh() except: # Check for possible values entered flag = False usermin.SetBackgroundColour("pink") usermin.Refresh() return flag
[docs] def floatForwardTransform(self, x): """ transform a float. """ #TODO: refactor this with proper object-oriented design # This code stinks. if(self.xLabel == "x"): return transform.toX(x) if(self.xLabel == "x^(2)"): return transform.toX2(x) if(self.xLabel == "ln(x)"): return transform.toLogX(x) if(self.xLabel == "log10(x)"): return math.log10(x)
[docs] def floatTransform(self, x): """ transform a float.It is use to determine the x. View min and x.View max for values not in x """ #TODO: refactor this with proper object-oriented design # This code stinks. if(self.xLabel == "x"): return transform.toX(x) if(self.xLabel == "x^(2)"): return transform.toX2(x) if(self.xLabel == "ln(x)"): return transform.toLogX(x) if(self.xLabel == "log10(x)"): if x > 0: return x else: raise ValueError, "cannot compute log of a negative number"
[docs] def floatInvTransform(self, x): """ transform a float.It is use to determine the x.View min and x.View max for values not in x """ #TODO: refactor this. This is just a hack to make the # functionality work without rewritting the whole code # with good design (which really should be done...). if(self.xLabel == "x^(2)"): return math.sqrt(x) elif(self.xLabel == "log10(x)"): return math.pow(10, x) elif(self.xLabel == "ln(x)"): return math.exp(x) return x
[docs] def checkFitValues(self, item): """ Check the validity of input values """ flag = True value = item.GetValue() # Check for possible values entered if (self.xLabel == "log10(x)"): #or self.xLabel=="ln(x)"): if(float(value) > 0): item.SetBackgroundColour(wx.WHITE) item.Refresh() else: flag = False item.SetBackgroundColour("pink") item.Refresh() return flag
[docs] def setFitRange(self, xmin, xmax, xminTrans, xmaxTrans): """ Set fit parameters """ self.xminFit.SetValue(format_number(xmin)) self.xmaxFit.SetValue(format_number(xmax))
[docs] def set_fit_region(self, xmin, xmax): """ Set the fit region :param xmin: minimum x-value to be included in fit :param xmax: maximum x-value to be included in fit """ # Check values try: float(xmin) float(xmax) except: msg = "LinearFit.set_fit_region: fit range must be floats" raise ValueError, msg self.xminFit.SetValue(format_number(xmin)) self.xmaxFit.SetValue(format_number(xmax))
[docs]class MyApp(wx.App): """ """
[docs] def OnInit(self): """ """ wx.InitAllImageHandlers() plot = Theory1D([], []) dialog = LinearFit(parent=None, plottable=plot, push_data=self.onFitDisplay, transform=self.returnTrans, title='Linear Fit') if dialog.ShowModal() == wx.ID_OK: pass dialog.Destroy() return 1
[docs] def onFitDisplay(self, tempx, tempy, xminView, xmaxView, xmin, xmax, func): """ """ pass
[docs] def returnTrans(self): """ """ return '', '', 0, 0, 0, 0, 0