sas.perspectives.fitting.plugin_models package

Submodules

sas.perspectives.fitting.plugin_models.polynomial5 module

Test plug-in model These are links of available functions:

http://docs.python.org/library/math.html http://www.scipy.org/Numpy_Functions_by_Category

class sas.perspectives.fitting.plugin_models.polynomial5.Model[source]

Bases: sas.models.pluginmodel.Model1DPlugin

##YOU CAN BE MODIFY ANYTHING BETWEEN ##DESCRIPTION OF MODEL PLUG-IN GOES HERE

##EXAMPLE: Class that evaluates a polynomial model.

function(x=0.0)[source]

Evaluate the model :param x: input x :return: function value

get_fname()[source]

Get the model name same as the file name

name = ''

sas.perspectives.fitting.plugin_models.sph_bessel_jn module

Test plug-in model These are links of available functions:

http://docs.python.org/library/math.html http://www.scipy.org/Numpy_Functions_by_Category

class sas.perspectives.fitting.plugin_models.sph_bessel_jn.Model[source]

Bases: sas.models.pluginmodel.Model1DPlugin

##YOU CAN BE MODIFY ANYTHING BETWEEN ##DESCRIPTION OF MODEL PLUG-IN GOES HERE

##EXAMPLE: Class that evaluates a polynomial model.

function(x=0.0)[source]

Evaluate the model

Parameters:x – input x
Returns:function value
get_fname()[source]

Get the model name same as the file name

name = ''

sas.perspectives.fitting.plugin_models.sum_Ap1_1_Ap2 module

class sas.perspectives.fitting.plugin_models.sum_Ap1_1_Ap2.Model[source]

Bases: sas.models.pluginmodel.Model1DPlugin

Use for A*p1(Q)+(1-A)*p2(Q); Note: P(Q) refers to ‘form factor’ model.

evalDistribution(x=[])[source]

Evaluate the model in cartesian coordinates

Parameters:x – input q[], or [qx[], qy[]]
Returns:scattering function P(q[])
fill_description(p_model1, p_model2)[source]

Fill the description for P(Q)+P(Q)

function(x=0.0)[source]
getParam(name)[source]

Set the value of a model parameter

Parameters:name – name of the parameter
getProfile()[source]

Get SLD profile of p_model if exists

: return: (r, beta) where r is a list of radius of the transition points
beta is a list of the corresponding SLD values
: Note: This works only for func_shell# = 2 (exp function)
and is not supporting for p2
get_fname()[source]

Get the model name same as the file name

name = ''
run(x=0.0)[source]

Evaluate the model

Parameters:x – input q-value (float or [float, float] as [r, theta])
Returns:(scattering function value)
runXY(x=0.0)[source]

Evaluate the model

Parameters:x – input q-value (float or [float, float] as [qx, qy])
Returns:scattering function value
setParam(name, value)[source]

Set the value of a model parameter

Parameters:
  • name – name of the parameter
  • value – value of the parameter
set_dispersion(parameter, dispersion)[source]

Set the dispersion object for a model parameter

Parameters:parameter – name of the parameter [string]
Dispersion:dispersion object of type DispersionModel

sas.perspectives.fitting.plugin_models.sum_p1_p2 module

class sas.perspectives.fitting.plugin_models.sum_p1_p2.Model[source]

Bases: sas.models.pluginmodel.Model1DPlugin

Use for p1(Q)+p2(Q); Note: P(Q) refers to ‘form factor’ model.

evalDistribution(x=[])[source]

Evaluate the model in cartesian coordinates

Parameters:x – input q[], or [qx[], qy[]]
Returns:scattering function P(q[])
fill_description(p_model1, p_model2)[source]

Fill the description for P(Q)+P(Q)

function(x=0.0)[source]
getParam(name)[source]

Set the value of a model parameter

Parameters:name – name of the parameter
getProfile()[source]

Get SLD profile of p_model if exists

: return: (r, beta) where r is a list of radius of the transition points
beta is a list of the corresponding SLD values
: Note: This works only for func_shell# = 2 (exp function)
and is not supporting for p2
get_fname()[source]

Get the model name same as the file name

name = ''
run(x=0.0)[source]

Evaluate the model

Parameters:x – input q-value (float or [float, float] as [r, theta])
Returns:(scattering function value)
runXY(x=0.0)[source]

Evaluate the model

Parameters:x – input q-value (float or [float, float] as [qx, qy])
Returns:scattering function value
setParam(name, value)[source]

Set the value of a model parameter

Parameters:
  • name – name of the parameter
  • value – value of the parameter
set_dispersion(parameter, dispersion)[source]

Set the dispersion object for a model parameter

Parameters:parameter – name of the parameter [string]
Dispersion:dispersion object of type DispersionModel

sas.perspectives.fitting.plugin_models.testmodel module

Test plug-in model These are links of available functions:

http://docs.python.org/library/math.html http://www.scipy.org/Numpy_Functions_by_Category

class sas.perspectives.fitting.plugin_models.testmodel.Model[source]

Bases: sas.models.pluginmodel.Model1DPlugin

##YOU CAN BE MODIFY ANYTHING BETWEEN ##DESCRIPTION OF MODEL PLUG-IN GOES HERE

##EXAMPLE:Class that evaluates a cos(x) model.

function(x=0.0)[source]

Evaluate the model

Parameters:x – input x
Returns:function value
get_fname()[source]

Get the model name same as the file name

name = ''

sas.perspectives.fitting.plugin_models.testmodel_2 module

Test plug-in model These are links of available functions:

http://docs.python.org/library/math.html http://www.scipy.org/Numpy_Functions_by_Category

class sas.perspectives.fitting.plugin_models.testmodel_2.Model[source]

Bases: sas.models.pluginmodel.Model1DPlugin

##YOU CAN BE MODIFY ANYTHING BETWEEN ##DESCRIPTION OF MODEL PLUG-IN GOES HERE

##EXAMPLE: Class that evaluates a polynomial model.

function(x=0.0)[source]

Evaluate the model

Parameters:x – input x
Returns:function value
get_fname()[source]

Get the model name same as the file name

name = ''

Module contents