"""
ASCII reader
"""
############################################################################
#This software was developed by the University of Tennessee as part of the
#Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
#project funded by the US National Science Foundation.
#If you use DANSE applications to do scientific research that leads to
#publication, we ask that you acknowledge the use of the software with the
#following sentence:
#This work benefited from DANSE software developed under NSF award DMR-0520547.
#copyright 2008, University of Tennessee
#############################################################################
import numpy
import os
from sas.dataloader.data_info import Data1D
# Check whether we have a converter available
has_converter = True
try:
from sas.data_util.nxsunit import Converter
except:
has_converter = False
_ZERO = 1e-16
[docs]class Reader:
"""
Class to load ascii files (2, 3 or 4 columns).
"""
## File type
type_name = "ASCII"
## Wildcards
type = ["ASCII files (*.txt)|*.txt",
"ASCII files (*.dat)|*.dat",
"ASCII files (*.abs)|*.abs",
"CSV files (*.csv)|*.csv"]
## List of allowed extensions
ext = ['.txt', '.TXT', '.dat', '.DAT', '.abs', '.ABS', 'csv', 'CSV']
## Flag to bypass extension check
allow_all = True
[docs] def read(self, path):
"""
Load data file
:param path: file path
:return: Data1D object, or None
:raise RuntimeError: when the file can't be opened
:raise ValueError: when the length of the data vectors are inconsistent
"""
if os.path.isfile(path):
basename = os.path.basename(path)
_, extension = os.path.splitext(basename)
if self.allow_all or extension.lower() in self.ext:
try:
# Read in binary mode since GRASP frequently has no-ascii
# characters that brakes the open operation
input_f = open(path,'rb')
except:
raise RuntimeError, "ascii_reader: cannot open %s" % path
buff = input_f.read()
lines = buff.splitlines()
x = numpy.zeros(0)
y = numpy.zeros(0)
dy = numpy.zeros(0)
dx = numpy.zeros(0)
#temp. space to sort data
tx = numpy.zeros(0)
ty = numpy.zeros(0)
tdy = numpy.zeros(0)
tdx = numpy.zeros(0)
output = Data1D(x, y, dy=dy, dx=dx)
self.filename = output.filename = basename
data_conv_q = None
data_conv_i = None
if has_converter == True and output.x_unit != '1/A':
data_conv_q = Converter('1/A')
# Test it
data_conv_q(1.0, output.x_unit)
if has_converter == True and output.y_unit != '1/cm':
data_conv_i = Converter('1/cm')
# Test it
data_conv_i(1.0, output.y_unit)
# The first good line of data will define whether
# we have 2-column or 3-column ascii
has_error_dx = None
has_error_dy = None
#Initialize counters for data lines and header lines.
is_data = False # Has more than 5 lines
# More than "5" lines of data is considered as actual
# data unless that is the only data
mum_data_lines = 5
# To count # of current data candidate lines
i = -1
# To count total # of previous data candidate lines
i1 = -1
# To count # of header lines
j = -1
# Helps to count # of header lines
j1 = -1
#minimum required number of columns of data; ( <= 4).
lentoks = 2
for line in lines:
# Initial try for CSV (split on ,)
toks = line.split(',')
# Now try SCSV (split on ;)
if len(toks) < 2:
toks = line.split(';')
# Now go for whitespace
if len(toks) < 2:
toks = line.split()
try:
#Make sure that all columns are numbers.
for colnum in range(len(toks)):
float(toks[colnum])
_x = float(toks[0])
_y = float(toks[1])
#Reset the header line counters
if j == j1:
j = 0
j1 = 0
if i > 1:
is_data = True
if data_conv_q is not None:
_x = data_conv_q(_x, units=output.x_unit)
if data_conv_i is not None:
_y = data_conv_i(_y, units=output.y_unit)
# If we have an extra token, check
# whether it can be interpreted as a
# third column.
_dy = None
if len(toks) > 2:
try:
_dy = float(toks[2])
if data_conv_i is not None:
_dy = data_conv_i(_dy, units=output.y_unit)
except:
# The third column is not a float, skip it.
pass
# If we haven't set the 3rd column
# flag, set it now.
if has_error_dy == None:
has_error_dy = False if _dy == None else True
#Check for dx
_dx = None
if len(toks) > 3:
try:
_dx = float(toks[3])
if data_conv_i is not None:
_dx = data_conv_i(_dx, units=output.x_unit)
except:
# The 4th column is not a float, skip it.
pass
# If we haven't set the 3rd column
# flag, set it now.
if has_error_dx == None:
has_error_dx = False if _dx == None else True
#After talked with PB, we decided to take care of only
# 4 columns of data for now.
#number of columns in the current line
#To remember the # of columns in the current
#line of data
new_lentoks = len(toks)
#If the previous columns not equal to the current,
#mark the previous as non-data and reset the dependents.
if lentoks != new_lentoks:
if is_data == True:
break
else:
i = -1
i1 = 0
j = -1
j1 = -1
#Delete the previously stored lines of data candidates
# if is not data.
if i < 0 and -1 < i1 < mum_data_lines and \
is_data == False:
try:
x = numpy.zeros(0)
y = numpy.zeros(0)
except:
pass
x = numpy.append(x, _x)
y = numpy.append(y, _y)
if has_error_dy == True:
#Delete the previously stored lines of
# data candidates if is not data.
if i < 0 and -1 < i1 < mum_data_lines and \
is_data == False:
try:
dy = numpy.zeros(0)
except:
pass
dy = numpy.append(dy, _dy)
if has_error_dx == True:
#Delete the previously stored lines of
# data candidates if is not data.
if i < 0 and -1 < i1 < mum_data_lines and \
is_data == False:
try:
dx = numpy.zeros(0)
except:
pass
dx = numpy.append(dx, _dx)
#Same for temp.
#Delete the previously stored lines of data candidates
# if is not data.
if i < 0 and -1 < i1 < mum_data_lines and\
is_data == False:
try:
tx = numpy.zeros(0)
ty = numpy.zeros(0)
except:
pass
tx = numpy.append(tx, _x)
ty = numpy.append(ty, _y)
if has_error_dy == True:
#Delete the previously stored lines of
# data candidates if is not data.
if i < 0 and -1 < i1 < mum_data_lines and \
is_data == False:
try:
tdy = numpy.zeros(0)
except:
pass
tdy = numpy.append(tdy, _dy)
if has_error_dx == True:
#Delete the previously stored lines of
# data candidates if is not data.
if i < 0 and -1 < i1 < mum_data_lines and \
is_data == False:
try:
tdx = numpy.zeros(0)
except:
pass
tdx = numpy.append(tdx, _dx)
#reset i1 and flag lentoks for the next
if lentoks < new_lentoks:
if is_data == False:
i1 = -1
#To remember the # of columns on the current line
# for the next line of data
lentoks = len(toks)
#Reset # of header lines and counts #
# of data candidate lines
if j == 0 and j1 == 0:
i1 = i + 1
i += 1
except:
# It is data and meet non - number, then stop reading
if is_data == True:
break
lentoks = 2
#Counting # of header lines
j += 1
if j == j1 + 1:
j1 = j
else:
j = -1
#Reset # of lines of data candidates
i = -1
# Couldn't parse this line, skip it
pass
input_f.close()
# Sanity check
if has_error_dy == True and not len(y) == len(dy):
msg = "ascii_reader: y and dy have different length"
raise RuntimeError, msg
if has_error_dx == True and not len(x) == len(dx):
msg = "ascii_reader: y and dy have different length"
raise RuntimeError, msg
# If the data length is zero, consider this as
# though we were not able to read the file.
if len(x) == 0:
raise RuntimeError, "ascii_reader: could not load file"
#Let's re-order the data to make cal.
# curve look better some cases
ind = numpy.lexsort((ty, tx))
for i in ind:
x[i] = tx[ind[i]]
y[i] = ty[ind[i]]
if has_error_dy == True:
dy[i] = tdy[ind[i]]
if has_error_dx == True:
dx[i] = tdx[ind[i]]
# Zeros in dx, dy
if has_error_dx:
dx[dx == 0] = _ZERO
if has_error_dy:
dy[dy == 0] = _ZERO
#Data
output.x = x[x != 0]
output.y = y[x != 0]
output.dy = dy[x != 0] if has_error_dy == True\
else numpy.zeros(len(output.y))
output.dx = dx[x != 0] if has_error_dx == True\
else numpy.zeros(len(output.x))
if data_conv_q is not None:
output.xaxis("\\rm{Q}", output.x_unit)
else:
output.xaxis("\\rm{Q}", 'A^{-1}')
if data_conv_i is not None:
output.yaxis("\\rm{Intensity}", output.y_unit)
else:
output.yaxis("\\rm{Intensity}", "cm^{-1}")
# Store loading process information
output.meta_data['loader'] = self.type_name
if len(output.x) < 1:
raise RuntimeError, "%s is empty" % path
return output
else:
raise RuntimeError, "%s is not a file" % path
return None