Source code for sas.sascalc.dataloader.readers.danse_reader
"""
DANSE/SANS file reader
"""
############################################################################
#This software was developed by the University of Tennessee as part of the
#Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
#project funded by the US National Science Foundation.
#If you use DANSE applications to do scientific research that leads to
#publication, we ask that you acknowledge the use of the software with the
#following sentence:
#This work benefited from DANSE software developed under NSF award DMR-0520547.
#copyright 2008, University of Tennessee
#############################################################################
import math
import os
import logging
import numpy as np
from ..data_info import plottable_2D, DataInfo, Detector
from ..manipulations import reader2D_converter
from ..file_reader_base_class import FileReader
from ..loader_exceptions import FileContentsException, DataReaderException
logger = logging.getLogger(__name__)
# Look for unit converter
has_converter = True
try:
from sas.sascalc.data_util.nxsunit import Converter
except:
has_converter = False
[docs]class Reader(FileReader):
"""
Example data manipulation
"""
## File type
type_name = "DANSE"
## Wildcards
type = ["DANSE files (*.sans)|*.sans"]
## Extension
ext = ['.sans', '.SANS']
[docs] def get_file_contents(self):
self.current_datainfo = DataInfo()
self.current_dataset = plottable_2D()
self.output = []
loaded_correctly = True
error_message = ""
# defaults
# wavelength in Angstrom
wavelength = 10.0
# Distance in meter
distance = 11.0
# Pixel number of center in x
center_x = 65
# Pixel number of center in y
center_y = 65
# Pixel size [mm]
pixel = 5.0
# Size in x, in pixels
size_x = 128
# Size in y, in pixels
size_y = 128
# Format version
fversion = 1.0
self.current_datainfo.filename = os.path.basename(self.f_open.name)
detector = Detector()
self.current_datainfo.detector.append(detector)
self.current_dataset.data = np.zeros([size_x, size_y])
self.current_dataset.err_data = np.zeros([size_x, size_y])
read_on = True
data_start_line = 1
while read_on:
line = self.nextline()
data_start_line += 1
if line.find("DATA:") >= 0:
read_on = False
break
toks = line.split(':')
try:
if toks[0] == "FORMATVERSION":
fversion = float(toks[1])
elif toks[0] == "WAVELENGTH":
wavelength = float(toks[1])
elif toks[0] == "DISTANCE":
distance = float(toks[1])
elif toks[0] == "CENTER_X":
center_x = float(toks[1])
elif toks[0] == "CENTER_Y":
center_y = float(toks[1])
elif toks[0] == "PIXELSIZE":
pixel = float(toks[1])
elif toks[0] == "SIZE_X":
size_x = int(toks[1])
elif toks[0] == "SIZE_Y":
size_y = int(toks[1])
except ValueError as e:
error_message += "Unable to parse {}. Default value used.\n".format(toks[0])
loaded_correctly = False
# Read the data
data = []
error = []
if not fversion >= 1.0:
msg = "danse_reader can't read this file {}".format(self.f_open.name)
raise FileContentsException(msg)
for line_num, data_str in enumerate(self.nextlines()):
toks = data_str.split()
try:
val = float(toks[0])
err = float(toks[1])
data.append(val)
error.append(err)
except ValueError as exc:
msg = "Unable to parse line {}: {}".format(line_num + data_start_line, data_str.strip())
raise FileContentsException(msg)
num_pts = size_x * size_y
if len(data) < num_pts:
msg = "Not enough data points provided. Expected {} but got {}".format(
size_x * size_y, len(data))
raise FileContentsException(msg)
elif len(data) > num_pts:
error_message += ("Too many data points provided. Expected {0} but"
" got {1}. Only the first {0} will be used.\n").format(num_pts, len(data))
loaded_correctly = False
data = data[:num_pts]
error = error[:num_pts]
# Qx and Qy vectors
theta = pixel / distance / 100.0
i_x = np.arange(size_x)
theta = (i_x - center_x + 1) * pixel / distance / 100.0
x_vals = 4.0 * np.pi / wavelength * np.sin(theta / 2.0)
xmin = x_vals.min()
xmax = x_vals.max()
i_y = np.arange(size_y)
theta = (i_y - center_y + 1) * pixel / distance / 100.0
y_vals = 4.0 * np.pi / wavelength * np.sin(theta / 2.0)
ymin = y_vals.min()
ymax = y_vals.max()
self.current_dataset.data = np.array(data, dtype=np.float64).reshape((size_y, size_x))
if fversion > 1.0:
self.current_dataset.err_data = np.array(error, dtype=np.float64).reshape((size_y, size_x))
# Store all data
# Store wavelength
if has_converter and self.current_datainfo.source.wavelength_unit != 'A':
conv = Converter('A')
wavelength = conv(wavelength,
units=self.current_datainfo.source.wavelength_unit)
self.current_datainfo.source.wavelength = wavelength
# Store distance
if has_converter and detector.distance_unit != 'm':
conv = Converter('m')
distance = conv(distance, units=detector.distance_unit)
detector.distance = distance
# Store pixel size
if has_converter and detector.pixel_size_unit != 'mm':
conv = Converter('mm')
pixel = conv(pixel, units=detector.pixel_size_unit)
detector.pixel_size.x = pixel
detector.pixel_size.y = pixel
# Store beam center in distance units
detector.beam_center.x = center_x * pixel
detector.beam_center.y = center_y * pixel
self.current_dataset.xaxis("\\rm{Q_{x}}", 'A^{-1}')
self.current_dataset.yaxis("\\rm{Q_{y}}", 'A^{-1}')
self.current_dataset.zaxis("\\rm{Intensity}", "cm^{-1}")
self.current_dataset.x_bins = x_vals
self.current_dataset.y_bins = y_vals
# Reshape data
x_vals = np.tile(x_vals, (size_y, 1)).flatten()
y_vals = np.tile(y_vals, (size_x, 1)).T.flatten()
if (np.all(self.current_dataset.err_data == None)
or np.any(self.current_dataset.err_data <= 0)):
new_err_data = np.sqrt(np.abs(self.current_dataset.data))
else:
new_err_data = self.current_dataset.err_data.flatten()
self.current_dataset.err_data = new_err_data
self.current_dataset.qx_data = x_vals
self.current_dataset.qy_data = y_vals
self.current_dataset.q_data = np.sqrt(x_vals**2 + y_vals**2)
self.current_dataset.mask = np.ones(len(x_vals), dtype=bool)
# Store loading process information
self.current_datainfo.meta_data['loader'] = self.type_name
self.send_to_output()
if not loaded_correctly:
raise DataReaderException(error_message)