Source code for sas.sasgui.guiframe.local_perspectives.plotting.SectorSlicer

"""
    Sector interactor
"""
import math
import wx
from BaseInteractor import _BaseInteractor
from sas.sasgui.guiframe.events import NewPlotEvent
from sas.sasgui.guiframe.events import StatusEvent
from sas.sasgui.guiframe.events import SlicerParameterEvent
from sas.sasgui.guiframe.events import EVT_SLICER_PARS
from sas.sasgui.guiframe.dataFitting import Data1D


[docs]class SectorInteractor(_BaseInteractor): """ Draw a sector slicer.Allow to performQ averaging on data 2D """ def __init__(self, base, axes, color='black', zorder=3): _BaseInteractor.__init__(self, base, axes, color=color) ## Class initialization self.markers = [] self.axes = axes ## connect the plot to event self.connect = self.base.connect ## compute qmax limit to reset the graph x = math.pow(max(self.base.data2D.xmax, math.fabs(self.base.data2D.xmin)), 2) y = math.pow(max(self.base.data2D.ymax, math.fabs(self.base.data2D.ymin)), 2) self.qmax = math.sqrt(x + y) ## Number of points on the plot self.nbins = 20 ## Angle of the middle line self.theta2 = math.pi / 3 ## Absolute value of the Angle between the middle line and any side line self.phi = math.pi / 12 # Binning base for log/lin binning self.bin_base = 0 ## Middle line self.main_line = LineInteractor(self, self.base.subplot, color='blue', zorder=zorder, r=self.qmax, theta=self.theta2) self.main_line.qmax = self.qmax ## Right Side line self.right_line = SideInteractor(self, self.base.subplot, color='black', zorder=zorder, r=self.qmax, phi=-1 * self.phi, theta2=self.theta2) self.right_line.qmax = self.qmax ## Left Side line self.left_line = SideInteractor(self, self.base.subplot, color='black', zorder=zorder, r=self.qmax, phi=self.phi, theta2=self.theta2) self.left_line.qmax = self.qmax ## draw the sector self.update() self._post_data() ## Bind to slice parameter events self.base.Bind(EVT_SLICER_PARS, self._onEVT_SLICER_PARS) def _onEVT_SLICER_PARS(self, event): """ receive an event containing parameters values to reset the slicer :param event: event of type SlicerParameterEvent with params as attribute """ wx.PostEvent(self.base.parent, StatusEvent(status="SectorSlicer._onEVT_SLICER_PARS")) event.Skip() if event.type == self.__class__.__name__: self.set_params(event.params) self.base.update()
[docs] def set_layer(self, n): """ Allow adding plot to the same panel :param n: the number of layer """ self.layernum = n self.update()
[docs] def clear(self): """ Clear the slicer and all connected events related to this slicer """ self.clear_markers() self.main_line.clear() self.left_line.clear() self.right_line.clear() self.base.connect.clearall() self.base.Unbind(EVT_SLICER_PARS)
[docs] def update(self): """ Respond to changes in the model by recalculating the profiles and resetting the widgets. """ # Update locations ## Check if the middle line was dragged and #update the picture accordingly if self.main_line.has_move: self.main_line.update() self.right_line.update(delta=-self.left_line.phi / 2, mline=self.main_line.theta) self.left_line.update(delta=self.left_line.phi / 2, mline=self.main_line.theta) ## Check if the left side has moved and update the slicer accordingly if self.left_line.has_move: self.main_line.update() self.left_line.update(phi=None, delta=None, mline=self.main_line, side=True, left=True) self.right_line.update(phi=self.left_line.phi, delta=None, mline=self.main_line, side=True, left=False, right=True) ## Check if the right side line has moved and #update the slicer accordingly if self.right_line.has_move: self.main_line.update() self.right_line.update(phi=None, delta=None, mline=self.main_line, side=True, left=False, right=True) self.left_line.update(phi=self.right_line.phi, delta=None, mline=self.main_line, side=True, left=False)
[docs] def save(self, ev): """ Remember the roughness for this layer and the next so that we can restore on Esc. """ self.base.freeze_axes() self.main_line.save(ev) self.right_line.save(ev) self.left_line.save(ev)
def _post_data(self, nbins=None): """ compute sector averaging of data2D into data1D :param nbins: the number of point to plot for the average 1D data """ ## get the data2D to average data = self.base.data2D # If we have no data, just return if data is None: return ## Averaging from sas.sascalc.dataloader.manipulations import SectorQ radius = self.qmax phimin = -self.left_line.phi + self.main_line.theta phimax = self.left_line.phi + self.main_line.theta bin_base = self.bin_base if nbins is None: nbins = 20 sect = SectorQ(r_min=0.0, r_max=radius, phi_min=phimin + math.pi, phi_max=phimax + math.pi, nbins=nbins, base=bin_base) sector = sect(self.base.data2D) ##Create 1D data resulting from average if hasattr(sector, "dxl"): dxl = sector.dxl else: dxl = None if hasattr(sector, "dxw"): dxw = sector.dxw else: dxw = None new_plot = Data1D(x=sector.x, y=sector.y, dy=sector.dy, dx=sector.dx) new_plot.dxl = dxl new_plot.dxw = dxw new_plot.name = "SectorQ" + "(" + self.base.data2D.name + ")" new_plot.source = self.base.data2D.source #new_plot.info=self.base.data2D.info new_plot.interactive = True new_plot.detector = self.base.data2D.detector ## If the data file does not tell us what the axes are, just assume... new_plot.xaxis("\\rm{Q}", "A^{-1}") new_plot.yaxis("\\rm{Intensity}", "cm^{-1}") if hasattr(data, "scale") and data.scale == 'linear' and \ self.base.data2D.name.count("Residuals") > 0: new_plot.ytransform = 'y' new_plot.yaxis("\\rm{Residuals} ", "/") new_plot.group_id = "2daverage" + self.base.data2D.name new_plot.id = "SectorQ" + self.base.data2D.name new_plot.is_data = True self.base.parent.update_theory(data_id=data.id, theory=new_plot) wx.PostEvent(self.base.parent, NewPlotEvent(plot=new_plot, title="SectorQ" + self.base.data2D.name))
[docs] def moveend(self, ev): """ Called a dragging motion ends.Get slicer event """ self.base.thaw_axes() ## Post parameters event = SlicerParameterEvent() event.type = self.__class__.__name__ event.params = self.get_params() ## Send slicer paramers to plotter2D wx.PostEvent(self.base, event)
[docs] def restore(self): """ Restore the roughness for this layer. """ self.main_line.restore() self.left_line.restore() self.right_line.restore()
[docs] def move(self, x, y, ev): """ Process move to a new position, making sure that the move is allowed. """ pass
[docs] def set_cursor(self, x, y): """ """ pass
[docs] def get_params(self): """ Store a copy of values of parameters of the slicer into a dictionary. :return params: the dictionary created """ params = {} ## Always make sure that the left and the right line are at phi ## angle of the middle line if math.fabs(self.left_line.phi) != math.fabs(self.right_line.phi): msg = "Phi left and phi right are different" msg += " %f, %f" % (self.left_line.phi, self.right_line.phi) raise ValueError, msg params["Phi [deg]"] = self.main_line.theta * 180 / math.pi params["Delta_Phi [deg]"] = math.fabs(self.left_line.phi * 180 / math.pi) params["nbins"] = self.nbins params["binning base"] = self.bin_base return params
[docs] def set_params(self, params): """ Receive a dictionary and reset the slicer with values contained in the values of the dictionary. :param params: a dictionary containing name of slicer parameters and values the user assigned to the slicer. """ main = params["Phi [deg]"] * math.pi / 180 phi = math.fabs(params["Delta_Phi [deg]"] * math.pi / 180) self.nbins = int(params["nbins"]) self.bin_base = params["binning base"] self.main_line.theta = main ## Reset the slicer parameters self.main_line.update() self.right_line.update(phi=phi, delta=None, mline=self.main_line, side=True, right=True) self.left_line.update(phi=phi, delta=None, mline=self.main_line, side=True) ## post the new corresponding data self._post_data(nbins=self.nbins)
[docs] def freeze_axes(self): """ """ self.base.freeze_axes()
[docs] def thaw_axes(self): """ """ self.base.thaw_axes()
[docs] def draw(self): """ """ self.base.draw()
[docs]class SideInteractor(_BaseInteractor): """ Draw an oblique line :param phi: the phase between the middle line and one side line :param theta2: the angle between the middle line and x- axis """ def __init__(self, base, axes, color='black', zorder=5, r=1.0, phi=math.pi / 4, theta2=math.pi / 3): """ """ _BaseInteractor.__init__(self, base, axes, color=color) ## Initialize the class self.markers = [] self.axes = axes ## compute the value of the angle between the current line and ## the x-axis self.save_theta = theta2 + phi self.theta = theta2 + phi ## the value of the middle line angle with respect to the x-axis self.theta2 = theta2 ## Radius to find polar coordinates this line's endpoints self.radius = r ## phi is the phase between the current line and the middle line self.phi = phi ## End points polar coordinates x1 = self.radius * math.cos(self.theta) y1 = self.radius * math.sin(self.theta) x2 = -1 * self.radius * math.cos(self.theta) y2 = -1 * self.radius * math.sin(self.theta) ## defining a new marker self.inner_marker = self.axes.plot([x1 / 2.5], [y1 / 2.5], linestyle='', marker='s', markersize=10, color=self.color, alpha=0.6, pickradius=5, label="pick", zorder=zorder, visible=True)[0] ## Defining the current line self.line = self.axes.plot([x1, x2], [y1, y2], linestyle='-', marker='', color=self.color, visible=True)[0] ## Flag to differentiate the left line from the right line motion self.left_moving = False ## Flag to define a motion self.has_move = False ## connecting markers and draw the picture self.connect_markers([self.inner_marker, self.line])
[docs] def set_layer(self, n): """ Allow adding plot to the same panel :param n: the number of layer """ self.layernum = n self.update()
[docs] def clear(self): """ Clear the slicer and all connected events related to this slicer """ self.clear_markers() try: self.line.remove() self.inner_marker.remove() except: # Old version of matplotlib for item in range(len(self.axes.lines)): del self.axes.lines[0]
[docs] def update(self, phi=None, delta=None, mline=None, side=False, left=False, right=False): """ Draw oblique line :param phi: the phase between the middle line and the current line :param delta: phi/2 applied only when the mline was moved """ #print "update left or right ", self.has_move self.left_moving = left theta3 = 0 if phi is not None: self.phi = phi if delta is None: delta = 0 if right: self.phi = -1 * math.fabs(self.phi) #delta=-delta else: self.phi = math.fabs(self.phi) if side: self.theta = mline.theta + self.phi if mline is not None: if delta != 0: self.theta2 = mline + delta else: self.theta2 = mline.theta if delta == 0: theta3 = self.theta + delta else: theta3 = self.theta2 + delta x1 = self.radius * math.cos(theta3) y1 = self.radius * math.sin(theta3) x2 = -1 * self.radius * math.cos(theta3) y2 = -1 * self.radius * math.sin(theta3) self.inner_marker.set(xdata=[x1 / 2.5], ydata=[y1 / 2.5]) self.line.set(xdata=[x1, x2], ydata=[y1, y2])
[docs] def save(self, ev): """ Remember the roughness for this layer and the next so that we can restore on Esc. """ self.save_theta = self.theta self.base.freeze_axes()
[docs] def moveend(self, ev): """ """ self.has_move = False self.base.moveend(ev)
[docs] def restore(self): """ Restore the roughness for this layer. """ self.theta = self.save_theta
[docs] def move(self, x, y, ev): """ Process move to a new position, making sure that the move is allowed. """ self.theta = math.atan2(y, x) self.has_move = True #ToDo: Simplify below if not self.left_moving: if self.theta2 - self.theta <= 0 and self.theta2 > 0: self.restore() return elif self.theta2 < 0 and self.theta < 0 and \ self.theta - self.theta2 >= 0: self.restore() return elif self.theta2 < 0 and self.theta > 0 and \ (self.theta2 + 2 * math.pi - self.theta) >= math.pi / 2: self.restore() return elif self.theta2 < 0 and self.theta < 0 and \ (self.theta2 - self.theta) >= math.pi / 2: self.restore() return elif self.theta2 > 0 and (self.theta2 - self.theta >= math.pi / 2 or \ (self.theta2 - self.theta >= math.pi / 2)): self.restore() return else: if self.theta < 0 and (self.theta + math.pi * 2 - self.theta2) <= 0: self.restore() return elif self.theta2 < 0 and (self.theta - self.theta2) <= 0: self.restore() return elif self.theta > 0 and self.theta - self.theta2 <= 0: self.restore() return elif self.theta - self.theta2 >= math.pi / 2 or \ ((self.theta + math.pi * 2 - self.theta2) >= math.pi / 2 and \ self.theta < 0 and self.theta2 > 0): self.restore() return self.phi = math.fabs(self.theta2 - self.theta) if self.phi > math.pi: self.phi = 2 * math.pi - math.fabs(self.theta2 - self.theta) self.base.base.update()
[docs] def set_cursor(self, x, y): """ """ self.move(x, y, None) self.update()
[docs] def get_params(self): """ """ params = {} params["radius"] = self.radius params["theta"] = self.theta return params
[docs] def set_params(self, params): """ """ x = params["radius"] self.set_cursor(x, None)
[docs]class LineInteractor(_BaseInteractor): """ Select an annulus through a 2D plot """ def __init__(self, base, axes, color='black', zorder=5, r=1.0, theta=math.pi / 4): """ """ _BaseInteractor.__init__(self, base, axes, color=color) self.markers = [] self.axes = axes self.save_theta = theta self.theta = theta self.radius = r self.scale = 10.0 # Inner circle x1 = self.radius * math.cos(self.theta) y1 = self.radius * math.sin(self.theta) x2 = -1 * self.radius * math.cos(self.theta) y2 = -1 * self.radius * math.sin(self.theta) # Inner circle marker self.inner_marker = self.axes.plot([x1 / 2.5], [y1 / 2.5], linestyle='', marker='s', markersize=10, color=self.color, alpha=0.6, pickradius=5, label="pick", zorder=zorder, visible=True)[0] self.line = self.axes.plot([x1, x2], [y1, y2], linestyle='-', marker='', color=self.color, visible=True)[0] self.npts = 20 self.has_move = False self.connect_markers([self.inner_marker, self.line]) self.update()
[docs] def set_layer(self, n): """ """ self.layernum = n self.update()
[docs] def clear(self): """ """ self.clear_markers() try: self.inner_marker.remove() self.line.remove() except: # Old version of matplotlib for item in range(len(self.axes.lines)): del self.axes.lines[0]
[docs] def update(self, theta=None): """ Draw the new roughness on the graph. """ if theta is not None: self.theta = theta x1 = self.radius * math.cos(self.theta) y1 = self.radius * math.sin(self.theta) x2 = -1 * self.radius * math.cos(self.theta) y2 = -1 * self.radius * math.sin(self.theta) self.inner_marker.set(xdata=[x1 / 2.5], ydata=[y1 / 2.5]) self.line.set(xdata=[x1, x2], ydata=[y1, y2])
[docs] def save(self, ev): """ Remember the roughness for this layer and the next so that we can restore on Esc. """ self.save_theta = self.theta self.base.freeze_axes()
[docs] def moveend(self, ev): """ """ self.has_move = False self.base.moveend(ev)
[docs] def restore(self): """ Restore the roughness for this layer. """ self.theta = self.save_theta
[docs] def move(self, x, y, ev): """ Process move to a new position, making sure that the move is allowed. """ self.theta = math.atan2(y, x) self.has_move = True self.base.base.update()
[docs] def set_cursor(self, x, y): """ """ self.move(x, y, None) self.update()
[docs] def get_params(self): """ """ params = {} params["radius"] = self.radius params["theta"] = self.theta return params
[docs] def set_params(self, params): """ """ x = params["radius"] self.set_cursor(x, None)