Source code for sasmodels.mixture

"""
Mixture model
-------------

The product model multiplies the structure factor by the form factor,
modulated by the effective radius of the form.  The resulting model
has a attributes of both the model description (with parameters, etc.)
and the module evaluator (with call, release, etc.).

To use it, first load form factor P and structure factor S, then create
*ProductModel(P, S)*.
"""
from __future__ import print_function

from copy import copy
from collections import OrderedDict

import numpy as np  # type: ignore

from .modelinfo import Parameter, ParameterTable, ModelInfo
from .kernel import KernelModel, Kernel
from .details import make_details

# pylint: disable=unused-import
try:
    from typing import List, Tuple, Optional, Callable, Any
    from .details import CallDetails
except ImportError:
    pass
# pylint: enable=unused-import

[docs]def make_mixture_info(parts, operation='+'): # type: (List[ModelInfo], str) -> ModelInfo """ Create info block for mixture model. """ # Build new parameter list combined_pars = [] all_parts = copy(parts) is_flat = False while not is_flat: is_flat = True for part in all_parts: if part.composition and part.composition[0] == 'mixture' and \ len(part.composition[1]) > 1: all_parts += part.composition[1] all_parts.remove(part) is_flat = False # When creating a mixture model that is a sum of product models (ie (1*2)+(3*4)) # the parameters for models 1 & 2 will be prefixed with A & B respectively, # but so will the parameters for models 3 & 4. We need to rename models 3 & 4 # so that they are prefixed with C & D to avoid overlap of parameter names. used_prefixes = [] for part in parts: i = 0 if part.composition and part.composition[0] == 'mixture': npars_list = [info.parameters.npars for info in part.composition[1]] for npars in npars_list: # List of params of one of the constituent models of part submodel_pars = part.parameters.kernel_parameters[i:i+npars] # Prefix of the constituent model prefix = submodel_pars[0].name[0] if prefix not in used_prefixes: # Haven't seen this prefix so far used_prefixes.append(prefix) i += npars continue while prefix in used_prefixes: # This prefix has been already used, so change it to the # next letter that hasn't been used prefix = chr(ord(prefix) + 1) used_prefixes.append(prefix) prefix += "_" # Update the parameters of this constituent model to use the # new prefix for par in submodel_pars: par.id = prefix + par.id[2:] par.name = prefix + par.name[2:] if par.length_control is not None: par.length_control = prefix + par.length_control[2:] i += npars for part in parts: # Parameter prefix per model, A_, B_, ... # Note that prefix must also be applied to id and length_control # to support vector parameters prefix = '' if not part.composition: # Model isn't a composition model, so it's parameters don't have a # a prefix. Add the next available prefix prefix = chr(ord('A')+len(used_prefixes)) used_prefixes.append(prefix) prefix += '_' if operation == '+': # If model is a sum model, each constituent model gets its own scale parameter scale_prefix = prefix if prefix == '' and getattr(part, "operation", '') == '*': # `part` is a composition product model. Find the prefixes of # it's parameters to form a new prefix for the scale. # For example, a model with A*B*C will have ABC_scale. sub_prefixes = [] for param in part.parameters.kernel_parameters: # Prefix of constituent model sub_prefix = param.id.split('_')[0] if sub_prefix not in sub_prefixes: sub_prefixes.append(sub_prefix) # Concatenate sub_prefixes to form prefix for the scale scale_prefix = ''.join(sub_prefixes) + '_' scale = Parameter(scale_prefix + 'scale', default=1.0, description="model intensity for " + part.name) combined_pars.append(scale) for p in part.parameters.kernel_parameters: p = copy(p) p.name = prefix + p.name p.id = prefix + p.id if p.length_control is not None: p.length_control = prefix + p.length_control combined_pars.append(p) parameters = ParameterTable(combined_pars) # Allow for the scenario in which each component has all its PD parameters # active simultaneously. details.make_details() will throw an error if # too many are used from any one component. parameters.max_pd = sum(part.parameters.max_pd for part in parts) def random(): """Random set of model parameters for mixture model""" combined_pars = {} for k, part in enumerate(parts): prefix = chr(ord('A')+k) + '_' pars = part.random() combined_pars.update((prefix+k, v) for k, v in pars.items()) return combined_pars model_info = ModelInfo() model_info.id = operation.join(part.id for part in parts) model_info.operation = operation model_info.name = '(' + operation.join(part.name for part in parts) + ')' model_info.filename = None model_info.title = 'Mixture model with ' + model_info.name model_info.description = model_info.title model_info.docs = model_info.title model_info.category = "custom" model_info.parameters = parameters model_info.random = random #model_info.single = any(part['single'] for part in parts) model_info.structure_factor = False #model_info.tests = [] #model_info.source = [] # Remember the component info blocks so we can build the model model_info.composition = ('mixture', parts) return model_info
[docs]class MixtureModel(KernelModel): """ Model definition for mixture of models. """ def __init__(self, model_info, parts): # type: (ModelInfo, List[KernelModel]) -> None self.info = model_info self.parts = parts self.dtype = parts[0].dtype
[docs] def make_kernel(self, q_vectors): # type: (List[np.ndarray]) -> MixtureKernel # Note: may be sending the q_vectors to the n times even though they # are only needed once. It would mess up modularity quite a bit to # handle this optimally, especially since there are many cases where # separate q vectors are needed (e.g., form in python and structure # in opencl; or both in opencl, but one in single precision and the # other in double precision). kernels = [part.make_kernel(q_vectors) for part in self.parts] return MixtureKernel(self.info, kernels, q_vectors)
make_kernel.__doc__ = KernelModel.make_kernel.__doc__
[docs] def release(self): # type: () -> None """Free resources associated with the model.""" for part in self.parts: part.release()
release.__doc__ = KernelModel.release.__doc__
def _intermediates(q, results): # type: (np.ndarray, List[Tuple[Kernel, np.ndarray, Optional[Callable]]]) -> OrderedDict[str, Any] """ Returns intermediate results for mixture model. """ parts = OrderedDict() for part_num, (kernel, Iq, intermediates) in enumerate(results): part_id = chr(ord('A') + part_num) + "_" + kernel.info.name + "(Q)" parts[part_id] = (q, Iq) if intermediates is not None: parts[part_id + " parts"] = intermediates() return parts
[docs]class MixtureKernel(Kernel): """ Instantiated kernel for mixture of models. """ def __init__(self, model_info, kernels, q): # type: (ModelInfo, List[Kernel], Tuple[np.ndarray]) -> None self.dim = kernels[0].dim self.info = model_info self.q = q self.kernels = kernels self.dtype = self.kernels[0].dtype self.operation = model_info.operation self.results = None # type: Callable[[], OrderedDict]
[docs] def Iq(self, call_details, values, cutoff, magnetic): # type: (CallDetails, np.ndarray, np.ndarry, float, bool) -> np.ndarray scale, background = values[0:2] total = 0.0 # remember the parts for plotting later results = [] parts = _MixtureParts(self.info, self.kernels, call_details, values) for kernel, kernel_details, kernel_values in parts: #print("calling kernel", kernel.info.name) result = kernel(kernel_details, kernel_values, cutoff, magnetic) result = np.array(result).astype(kernel.dtype) # print(kernel.info.name, result) if self.operation == '+': total += result elif self.operation == '*': if np.all(total) == 0.0: total = result else: total *= result results.append((kernel, result, getattr(kernel, 'results', None))) self.results = lambda: _intermediates(self.q, results) return scale*total + background
Iq.__doc__ = Kernel.Iq.__doc__ __call__ = Iq
[docs] def release(self): # type: () -> None """Free resources associated with the kernel.""" for k in self.kernels: k.release()
# Note: _MixtureParts doesn't implement iteration correctly, and only allows # a single iterator to be active at once. It doesn't matter in this case # since _MixtureParts is only used in one place, but it is not clean style. class _MixtureParts(object): """ Mixture component iterator. """ def __init__(self, model_info, kernels, call_details, values): # type: (ModelInfo, List[Kernel], CallDetails, np.ndarray) -> None self.model_info = model_info self.parts = model_info.composition[1] self.kernels = kernels self.call_details = call_details self.values = values self.spin_index = model_info.parameters.npars + 2 # The following are redefined by __iter__, but set them here so that # lint complains a little less. self.part_num = -1 self.par_index = -1 self.mag_index = -1 #call_details.show(values) def __iter__(self): # type: () -> _MixtureParts self.part_num = 0 self.par_index = 2 self.mag_index = self.spin_index + 3 return self def __next__(self): # type: () -> Tuple[List[Callable], CallDetails, np.ndarray] if self.part_num >= len(self.parts): raise StopIteration() info = self.parts[self.part_num] kernel = self.kernels[self.part_num] call_details = self._part_details(info, self.par_index) values = self._part_values(info, self.par_index, self.mag_index) values = values.astype(kernel.dtype) #call_details.show(values) self.part_num += 1 self.par_index += info.parameters.npars if self.model_info.operation == '+': self.par_index += 1 # Account for each constituent model's scale param self.mag_index += 3 * len(info.parameters.magnetism_index) return kernel, call_details, values # CRUFT: py2 support next = __next__ def _part_details(self, info, par_index): # type: (ModelInfo, int) -> CallDetails full = self.call_details # par_index is index into values array of the current parameter, # which includes the initial scale and background parameters. # We want the index into the weight length/offset for each parameter. # Exclude the initial scale and background, so subtract two. If we're # building an addition model, each component has its own scale factor # which we need to skip when constructing the details for the kernel, so # add one, giving a net subtract one. diff = 1 if self.model_info.operation == '+' else 2 index = slice(par_index - diff, par_index - diff + info.parameters.npars) length = full.length[index] offset = full.offset[index] # The complete weight vector is being sent to each part so that # offsets don't need to be adjusted. part = make_details(info, length, offset, full.num_weights) return part def _part_values(self, info, par_index, mag_index): # type: (ModelInfo, int, int) -> np.ndarray # Set each constituent model's scale to 1 if this is a multiplication model scale = self.values[par_index] if self.model_info.operation == '+' else 1.0 diff = 1 if self.model_info.operation == '+' else 0 # Skip scale if addition model pars = self.values[par_index + diff:par_index + info.parameters.npars + diff] nmagnetic = len(info.parameters.magnetism_index) if nmagnetic: spin_state = self.values[self.spin_index:self.spin_index + 3] mag_index = self.values[mag_index:mag_index + 3 * nmagnetic] else: spin_state = [] mag_index = [] nvalues = self.model_info.parameters.nvalues nweights = self.call_details.num_weights weights = self.values[nvalues:nvalues+2*nweights] zero = self.values.dtype.type(0.) values = [[scale, zero], pars, spin_state, mag_index, weights] # Pad value array to a 32 value boundary spacer = (32 - sum(len(v) for v in values)%32)%32 values.append([zero]*spacer) values = np.hstack(values).astype(self.kernels[0].dtype) return values