"""
Sector interactor
"""
import numpy
import logging
from sas.qtgui.Plotting.Slicers.BaseInteractor import BaseInteractor
from sas.qtgui.Plotting.PlotterData import Data1D
import sas.qtgui.Utilities.GuiUtils as GuiUtils
from sas.qtgui.Plotting.SlicerModel import SlicerModel
MIN_PHI = 0.05
[docs]class SectorInteractor(BaseInteractor, SlicerModel):
"""
Draw a sector slicer.Allow to performQ averaging on data 2D
"""
def __init__(self, base, axes, item=None, color='black', zorder=3):
BaseInteractor.__init__(self, base, axes, color=color)
SlicerModel.__init__(self)
# Class initialization
self.markers = []
self.axes = axes
self._item = item
# Connect the plot to event
self.connect = self.base.connect
# Compute qmax limit to reset the graph
x = numpy.power(max(self.data.xmax,
numpy.fabs(self.data.xmin)), 2)
y = numpy.power(max(self.data.ymax,
numpy.fabs(self.data.ymin)), 2)
self.qmax = numpy.sqrt(x + y)
# Number of points on the plot
self.nbins = 20
# Angle of the middle line
self.theta2 = numpy.pi / 3
# Absolute value of the Angle between the middle line and any side line
self.phi = numpy.pi / 12
# Middle line
self.main_line = LineInteractor(self, self.axes, color='blue',
zorder=zorder, r=self.qmax,
theta=self.theta2)
self.main_line.qmax = self.qmax
# Right Side line
self.right_line = SideInteractor(self, self.axes, color='black',
zorder=zorder, r=self.qmax,
phi=-1 * self.phi, theta2=self.theta2)
self.right_line.qmax = self.qmax
# Left Side line
self.left_line = SideInteractor(self, self.axes, color='black',
zorder=zorder, r=self.qmax,
phi=self.phi, theta2=self.theta2)
self.left_line.qmax = self.qmax
# draw the sector
self.update()
self._post_data()
self.setModelFromParams()
[docs] def set_layer(self, n):
"""
Allow adding plot to the same panel
:param n: the number of layer
"""
self.layernum = n
self.update()
[docs] def clear(self):
"""
Clear the slicer and all connected events related to this slicer
"""
self.clear_markers()
self.main_line.clear()
self.left_line.clear()
self.right_line.clear()
self.base.connect.clearall()
[docs] def update(self):
"""
Respond to changes in the model by recalculating the profiles and
resetting the widgets.
"""
# Update locations
# Check if the middle line was dragged and
# update the picture accordingly
if self.main_line.has_move:
self.main_line.update()
self.right_line.update(delta=-self.left_line.phi / 2,
mline=self.main_line.theta)
self.left_line.update(delta=self.left_line.phi / 2,
mline=self.main_line.theta)
# Check if the left side has moved and update the slicer accordingly
if self.left_line.has_move:
self.main_line.update()
self.left_line.update(phi=None, delta=None, mline=self.main_line,
side=True, left=True)
self.right_line.update(phi=self.left_line.phi, delta=None,
mline=self.main_line, side=True,
left=False, right=True)
# Check if the right side line has moved and update the slicer accordingly
if self.right_line.has_move:
self.main_line.update()
self.right_line.update(phi=None, delta=None, mline=self.main_line,
side=True, left=False, right=True)
self.left_line.update(phi=self.right_line.phi, delta=None,
mline=self.main_line, side=True, left=False)
[docs] def save(self, ev):
"""
Remember the roughness for this layer and the next so that we
can restore on Esc.
"""
self.main_line.save(ev)
self.right_line.save(ev)
self.left_line.save(ev)
def _post_data(self, nbins=None):
"""
compute sector averaging of data2D into data1D
:param nbins: the number of point to plot for the average 1D data
"""
# Get the data2D to average
data = self.data
# If we have no data, just return
if data is None:
return
# Averaging
from sas.sascalc.dataloader.manipulations import SectorQ
radius = self.qmax
phimin = -self.left_line.phi + self.main_line.theta
phimax = self.left_line.phi + self.main_line.theta
if nbins is None:
nbins = 20
sect = SectorQ(r_min=0.0, r_max=radius,
phi_min=phimin + numpy.pi,
phi_max=phimax + numpy.pi, nbins=nbins)
sector = sect(self.data)
# Create 1D data resulting from average
if hasattr(sector, "dxl"):
dxl = sector.dxl
else:
dxl = None
if hasattr(sector, "dxw"):
dxw = sector.dxw
else:
dxw = None
new_plot = Data1D(x=sector.x, y=sector.y, dy=sector.dy, dx=sector.dx)
new_plot.dxl = dxl
new_plot.dxw = dxw
new_plot.name = "SectorQ" + "(" + self.data.name + ")"
new_plot.title = "SectorQ" + "(" + self.data.name + ")"
new_plot.source = self.data.source
new_plot.interactive = True
new_plot.detector = self.data.detector
# If the data file does not tell us what the axes are, just assume them.
new_plot.xaxis("\\rm{Q}", "A^{-1}")
new_plot.yaxis("\\rm{Intensity}", "cm^{-1}")
if hasattr(data, "scale") and data.scale == 'linear' and \
self.data.name.count("Residuals") > 0:
new_plot.ytransform = 'y'
new_plot.yaxis("\\rm{Residuals} ", "/")
new_plot.group_id = "2daverage" + self.data.name
new_plot.id = "SectorQ" + self.data.name
new_plot.is_data = True
item = self._item
if self._item.parent() is not None:
item = self._item.parent()
GuiUtils.updateModelItemWithPlot(item, new_plot, new_plot.id)
self.base.manager.communicator.plotUpdateSignal.emit([new_plot])
self.base.manager.communicator.forcePlotDisplaySignal.emit([item, new_plot])
if self.update_model:
self.setModelFromParams()
self.draw()
[docs] def validate(self, param_name, param_value):
"""
Test the proposed new value "value" for row "row" of parameters
"""
MIN_DIFFERENCE = 0.01
isValid = True
if param_name == 'Delta_Phi [deg]':
# First, check the closeness
if numpy.fabs(param_value) < MIN_DIFFERENCE:
print("Sector angles too close. Please adjust.")
isValid = False
elif param_name == 'nbins':
# Can't be 0
if param_value < 1:
print("Number of bins cannot be less than or equal to 0. Please adjust.")
isValid = False
return isValid
[docs] def moveend(self, ev):
"""
Called a dragging motion ends.Get slicer event
"""
# Post parameters
self._post_data(self.nbins)
[docs] def restore(self):
"""
Restore the roughness for this layer.
"""
self.main_line.restore()
self.left_line.restore()
self.right_line.restore()
[docs] def move(self, x, y, ev):
"""
Process move to a new position, making sure that the move is allowed.
"""
pass
[docs] def set_cursor(self, x, y):
pass
[docs] def getParams(self):
"""
Store a copy of values of parameters of the slicer into a dictionary.
:return params: the dictionary created
"""
params = {}
# Always make sure that the left and the right line are at phi
# angle of the middle line
if numpy.fabs(self.left_line.phi) != numpy.fabs(self.right_line.phi):
msg = "Phi left and phi right are different"
msg += " %f, %f" % (self.left_line.phi, self.right_line.phi)
raise ValueError(msg)
params["Phi [deg]"] = self.main_line.theta * 180 / numpy.pi
params["Delta_Phi [deg]"] = numpy.fabs(self.left_line.phi * 180 / numpy.pi)
params["nbins"] = self.nbins
return params
[docs] def setParams(self, params):
"""
Receive a dictionary and reset the slicer with values contained
in the values of the dictionary.
:param params: a dictionary containing name of slicer parameters and
values the user assigned to the slicer.
"""
main = params["Phi [deg]"] * numpy.pi / 180
phi = numpy.fabs(params["Delta_Phi [deg]"] * numpy.pi / 180)
# phi should not be too close.
if numpy.fabs(phi) < MIN_PHI:
phi = MIN_PHI
params["Delta_Phi [deg]"] = MIN_PHI
self.nbins = int(params["nbins"])
self.main_line.theta = main
# Reset the slicer parameters
self.main_line.update()
self.right_line.update(phi=phi, delta=None, mline=self.main_line,
side=True, right=True)
self.left_line.update(phi=phi, delta=None,
mline=self.main_line, side=True)
# Post the new corresponding data
self._post_data(nbins=self.nbins)
[docs] def draw(self):
"""
Redraw canvas
"""
self.base.draw()
[docs]class SideInteractor(BaseInteractor):
"""
Draw an oblique line
:param phi: the phase between the middle line and one side line
:param theta2: the angle between the middle line and x- axis
"""
def __init__(self, base, axes, color='black', zorder=5, r=1.0,
phi=numpy.pi / 4, theta2=numpy.pi / 3):
BaseInteractor.__init__(self, base, axes, color=color)
# Initialize the class
self.markers = []
self.axes = axes
self.color = color
# compute the value of the angle between the current line and
# the x-axis
self.save_theta = theta2 + phi
self.theta = theta2 + phi
# the value of the middle line angle with respect to the x-axis
self.theta2 = theta2
# Radius to find polar coordinates this line's endpoints
self.radius = r
# phi is the phase between the current line and the middle line
self.phi = phi
# End points polar coordinates
x1 = self.radius * numpy.cos(self.theta)
y1 = self.radius * numpy.sin(self.theta)
x2 = -1 * self.radius * numpy.cos(self.theta)
y2 = -1 * self.radius * numpy.sin(self.theta)
# Defining a new marker
self.inner_marker = self.axes.plot([x1 / 2.5], [y1 / 2.5], linestyle='',
marker='s', markersize=10,
color=self.color, alpha=0.6,
pickradius=5, label="pick",
zorder=zorder, visible=True)[0]
# Defining the current line
self.line = self.axes.plot([x1, x2], [y1, y2],
linestyle='-', marker='',
color=self.color, visible=True)[0]
# Flag to differentiate the left line from the right line motion
self.left_moving = False
# Flag to define a motion
self.has_move = False
# connecting markers and draw the picture
self.connect_markers([self.inner_marker, self.line])
[docs] def set_layer(self, n):
"""
Allow adding plot to the same panel
:param n: the number of layer
"""
self.layernum = n
self.update()
[docs] def clear(self):
"""
Clear the slicer and all connected events related to this slicer
"""
self.clear_markers()
try:
self.line.remove()
self.inner_marker.remove()
except:
# Old version of matplotlib
for item in range(len(self.axes.lines)):
del self.axes.lines[0]
[docs] def update(self, phi=None, delta=None, mline=None,
side=False, left=False, right=False):
"""
Draw oblique line
:param phi: the phase between the middle line and the current line
:param delta: phi/2 applied only when the mline was moved
"""
self.left_moving = left
theta3 = 0
if phi is not None:
self.phi = phi
if delta is None:
delta = 0
if right:
self.phi = -1 * numpy.fabs(self.phi)
#delta=-delta
else:
self.phi = numpy.fabs(self.phi)
if side:
self.theta = mline.theta + self.phi
if mline is not None:
if delta != 0:
self.theta2 = mline + delta
else:
self.theta2 = mline.theta
if delta == 0:
theta3 = self.theta + delta
else:
theta3 = self.theta2 + delta
x1 = self.radius * numpy.cos(theta3)
y1 = self.radius * numpy.sin(theta3)
x2 = -1 * self.radius * numpy.cos(theta3)
y2 = -1 * self.radius * numpy.sin(theta3)
self.inner_marker.set(xdata=[x1 / 2.5], ydata=[y1 / 2.5])
self.line.set(xdata=[x1, x2], ydata=[y1, y2])
[docs] def save(self, ev):
"""
Remember the roughness for this layer and the next so that we
can restore on Esc.
"""
self.save_theta = self.theta
[docs] def moveend(self, ev):
self.has_move = False
self.base.moveend(ev)
[docs] def restore(self):
"""
Restore the roughness for this layer.
"""
self.theta = self.save_theta
[docs] def move(self, x, y, ev):
"""
Process move to a new position, making sure that the move is allowed.
"""
self.theta = numpy.arctan2(y, x)
self.has_move = True
if not self.left_moving:
if self.theta2 - self.theta <= 0 and self.theta2 > 0:
self.restore()
return
elif self.theta2 < 0 and self.theta < 0 and \
self.theta - self.theta2 >= 0:
self.restore()
return
elif self.theta2 < 0 and self.theta > 0 and \
(self.theta2 + 2 * numpy.pi - self.theta) >= numpy.pi / 2:
self.restore()
return
elif self.theta2 < 0 and self.theta < 0 and \
(self.theta2 - self.theta) >= numpy.pi / 2:
self.restore()
return
elif self.theta2 > 0 and (self.theta2 - self.theta >= numpy.pi / 2 or \
(self.theta2 - self.theta >= numpy.pi / 2)):
self.restore()
return
else:
if self.theta < 0 and (self.theta + numpy.pi * 2 - self.theta2) <= 0:
self.restore()
return
elif self.theta2 < 0 and (self.theta - self.theta2) <= 0:
self.restore()
return
elif self.theta > 0 and self.theta - self.theta2 <= 0:
self.restore()
return
elif self.theta - self.theta2 >= numpy.pi / 2 or \
((self.theta + numpy.pi * 2 - self.theta2) >= numpy.pi / 2 and \
self.theta < 0 and self.theta2 > 0):
self.restore()
return
self.phi = numpy.fabs(self.theta2 - self.theta)
if self.phi > numpy.pi:
self.phi = 2 * numpy.pi - numpy.fabs(self.theta2 - self.theta)
self.base.base.update()
[docs] def set_cursor(self, x, y):
self.move(x, y, None)
self.update()
[docs] def getParams(self):
params = {}
params["radius"] = self.radius
params["theta"] = self.theta
return params
[docs] def setParams(self, params):
x = params["radius"]
self.set_cursor(x, None)
[docs]class LineInteractor(BaseInteractor):
"""
Select an annulus through a 2D plot
"""
def __init__(self, base, axes, color='black',
zorder=5, r=1.0, theta=numpy.pi / 4):
BaseInteractor.__init__(self, base, axes, color=color)
self.markers = []
self.color = color
self.axes = axes
self.save_theta = theta
self.theta = theta
self.radius = r
self.scale = 10.0
# Inner circle
x1 = self.radius * numpy.cos(self.theta)
y1 = self.radius * numpy.sin(self.theta)
x2 = -1 * self.radius * numpy.cos(self.theta)
y2 = -1 * self.radius * numpy.sin(self.theta)
# Inner circle marker
self.inner_marker = self.axes.plot([x1 / 2.5], [y1 / 2.5], linestyle='',
marker='s', markersize=10,
color=self.color, alpha=0.6,
pickradius=5, label="pick",
zorder=zorder,
visible=True)[0]
self.line = self.axes.plot([x1, x2], [y1, y2],
linestyle='-', marker='',
color=self.color, visible=True)[0]
self.npts = 20
self.has_move = False
self.connect_markers([self.inner_marker, self.line])
self.update()
[docs] def set_layer(self, n):
self.layernum = n
self.update()
[docs] def clear(self):
self.clear_markers()
try:
self.inner_marker.remove()
self.line.remove()
except:
# Old version of matplotlib
for item in range(len(self.axes.lines)):
del self.axes.lines[0]
[docs] def update(self, theta=None):
"""
Draw the new roughness on the graph.
"""
if theta is not None:
self.theta = theta
x1 = self.radius * numpy.cos(self.theta)
y1 = self.radius * numpy.sin(self.theta)
x2 = -1 * self.radius * numpy.cos(self.theta)
y2 = -1 * self.radius * numpy.sin(self.theta)
self.inner_marker.set(xdata=[x1 / 2.5], ydata=[y1 / 2.5])
self.line.set(xdata=[x1, x2], ydata=[y1, y2])
[docs] def save(self, ev):
"""
Remember the roughness for this layer and the next so that we
can restore on Esc.
"""
self.save_theta = self.theta
[docs] def moveend(self, ev):
self.has_move = False
self.base.moveend(ev)
[docs] def restore(self):
"""
Restore the roughness for this layer.
"""
self.theta = self.save_theta
[docs] def move(self, x, y, ev):
"""
Process move to a new position, making sure that the move is allowed.
"""
self.theta = numpy.arctan2(y, x)
self.has_move = True
self.base.base.update()
[docs] def set_cursor(self, x, y):
self.move(x, y, None)
self.update()
[docs] def getParams(self):
params = {}
params["radius"] = self.radius
params["theta"] = self.theta
return params
[docs] def setParams(self, params):
x = params["radius"]
self.set_cursor(x, None)