Source code for sas.qtgui.Plotting.Slicers.SectorSlicer

"""
    Sector interactor
"""
import numpy
import logging

from sas.qtgui.Plotting.Slicers.BaseInteractor import BaseInteractor
from sas.qtgui.Plotting.PlotterData import Data1D
import sas.qtgui.Utilities.GuiUtils as GuiUtils
from sas.qtgui.Plotting.SlicerModel import SlicerModel

MIN_PHI = 0.05

[docs]class SectorInteractor(BaseInteractor, SlicerModel): """ Draw a sector slicer.Allow to performQ averaging on data 2D """ def __init__(self, base, axes, item=None, color='black', zorder=3): BaseInteractor.__init__(self, base, axes, color=color) SlicerModel.__init__(self) # Class initialization self.markers = [] self.axes = axes self._item = item # Connect the plot to event self.connect = self.base.connect # Compute qmax limit to reset the graph x = numpy.power(max(self.data.xmax, numpy.fabs(self.data.xmin)), 2) y = numpy.power(max(self.data.ymax, numpy.fabs(self.data.ymin)), 2) self.qmax = numpy.sqrt(x + y) # Number of points on the plot self.nbins = 20 # Angle of the middle line self.theta2 = numpy.pi / 3 # Absolute value of the Angle between the middle line and any side line self.phi = numpy.pi / 12 # Middle line self.main_line = LineInteractor(self, self.axes, color='blue', zorder=zorder, r=self.qmax, theta=self.theta2) self.main_line.qmax = self.qmax # Right Side line self.right_line = SideInteractor(self, self.axes, color='black', zorder=zorder, r=self.qmax, phi=-1 * self.phi, theta2=self.theta2) self.right_line.qmax = self.qmax # Left Side line self.left_line = SideInteractor(self, self.axes, color='black', zorder=zorder, r=self.qmax, phi=self.phi, theta2=self.theta2) self.left_line.qmax = self.qmax # draw the sector self.update() self._post_data() self.setModelFromParams()
[docs] def set_layer(self, n): """ Allow adding plot to the same panel :param n: the number of layer """ self.layernum = n self.update()
[docs] def clear(self): """ Clear the slicer and all connected events related to this slicer """ self.clear_markers() self.main_line.clear() self.left_line.clear() self.right_line.clear() self.base.connect.clearall()
[docs] def update(self): """ Respond to changes in the model by recalculating the profiles and resetting the widgets. """ # Update locations # Check if the middle line was dragged and # update the picture accordingly if self.main_line.has_move: self.main_line.update() self.right_line.update(delta=-self.left_line.phi / 2, mline=self.main_line.theta) self.left_line.update(delta=self.left_line.phi / 2, mline=self.main_line.theta) # Check if the left side has moved and update the slicer accordingly if self.left_line.has_move: self.main_line.update() self.left_line.update(phi=None, delta=None, mline=self.main_line, side=True, left=True) self.right_line.update(phi=self.left_line.phi, delta=None, mline=self.main_line, side=True, left=False, right=True) # Check if the right side line has moved and update the slicer accordingly if self.right_line.has_move: self.main_line.update() self.right_line.update(phi=None, delta=None, mline=self.main_line, side=True, left=False, right=True) self.left_line.update(phi=self.right_line.phi, delta=None, mline=self.main_line, side=True, left=False)
[docs] def save(self, ev): """ Remember the roughness for this layer and the next so that we can restore on Esc. """ self.main_line.save(ev) self.right_line.save(ev) self.left_line.save(ev)
def _post_data(self, nbins=None): """ compute sector averaging of data2D into data1D :param nbins: the number of point to plot for the average 1D data """ # Get the data2D to average data = self.data # If we have no data, just return if data is None: return # Averaging from sas.sascalc.dataloader.manipulations import SectorQ radius = self.qmax phimin = -self.left_line.phi + self.main_line.theta phimax = self.left_line.phi + self.main_line.theta if nbins is None: nbins = 20 sect = SectorQ(r_min=0.0, r_max=radius, phi_min=phimin + numpy.pi, phi_max=phimax + numpy.pi, nbins=nbins) sector = sect(self.data) # Create 1D data resulting from average if hasattr(sector, "dxl"): dxl = sector.dxl else: dxl = None if hasattr(sector, "dxw"): dxw = sector.dxw else: dxw = None new_plot = Data1D(x=sector.x, y=sector.y, dy=sector.dy, dx=sector.dx) new_plot.dxl = dxl new_plot.dxw = dxw new_plot.name = "SectorQ" + "(" + self.data.name + ")" new_plot.title = "SectorQ" + "(" + self.data.name + ")" new_plot.source = self.data.source new_plot.interactive = True new_plot.detector = self.data.detector # If the data file does not tell us what the axes are, just assume them. new_plot.xaxis("\\rm{Q}", "A^{-1}") new_plot.yaxis("\\rm{Intensity}", "cm^{-1}") if hasattr(data, "scale") and data.scale == 'linear' and \ self.data.name.count("Residuals") > 0: new_plot.ytransform = 'y' new_plot.yaxis("\\rm{Residuals} ", "/") new_plot.group_id = "2daverage" + self.data.name new_plot.id = "SectorQ" + self.data.name new_plot.is_data = True item = self._item if self._item.parent() is not None: item = self._item.parent() GuiUtils.updateModelItemWithPlot(item, new_plot, new_plot.id) self.base.manager.communicator.plotUpdateSignal.emit([new_plot]) self.base.manager.communicator.forcePlotDisplaySignal.emit([item, new_plot]) if self.update_model: self.setModelFromParams() self.draw()
[docs] def validate(self, param_name, param_value): """ Test the proposed new value "value" for row "row" of parameters """ MIN_DIFFERENCE = 0.01 isValid = True if param_name == 'Delta_Phi [deg]': # First, check the closeness if numpy.fabs(param_value) < MIN_DIFFERENCE: print("Sector angles too close. Please adjust.") isValid = False elif param_name == 'nbins': # Can't be 0 if param_value < 1: print("Number of bins cannot be less than or equal to 0. Please adjust.") isValid = False return isValid
[docs] def moveend(self, ev): """ Called a dragging motion ends.Get slicer event """ # Post parameters self._post_data(self.nbins)
[docs] def restore(self): """ Restore the roughness for this layer. """ self.main_line.restore() self.left_line.restore() self.right_line.restore()
[docs] def move(self, x, y, ev): """ Process move to a new position, making sure that the move is allowed. """ pass
[docs] def set_cursor(self, x, y): pass
[docs] def getParams(self): """ Store a copy of values of parameters of the slicer into a dictionary. :return params: the dictionary created """ params = {} # Always make sure that the left and the right line are at phi # angle of the middle line if numpy.fabs(self.left_line.phi) != numpy.fabs(self.right_line.phi): msg = "Phi left and phi right are different" msg += " %f, %f" % (self.left_line.phi, self.right_line.phi) raise ValueError(msg) params["Phi [deg]"] = self.main_line.theta * 180 / numpy.pi params["Delta_Phi [deg]"] = numpy.fabs(self.left_line.phi * 180 / numpy.pi) params["nbins"] = self.nbins return params
[docs] def setParams(self, params): """ Receive a dictionary and reset the slicer with values contained in the values of the dictionary. :param params: a dictionary containing name of slicer parameters and values the user assigned to the slicer. """ main = params["Phi [deg]"] * numpy.pi / 180 phi = numpy.fabs(params["Delta_Phi [deg]"] * numpy.pi / 180) # phi should not be too close. if numpy.fabs(phi) < MIN_PHI: phi = MIN_PHI params["Delta_Phi [deg]"] = MIN_PHI self.nbins = int(params["nbins"]) self.main_line.theta = main # Reset the slicer parameters self.main_line.update() self.right_line.update(phi=phi, delta=None, mline=self.main_line, side=True, right=True) self.left_line.update(phi=phi, delta=None, mline=self.main_line, side=True) # Post the new corresponding data self._post_data(nbins=self.nbins)
[docs] def draw(self): """ Redraw canvas """ self.base.draw()
[docs]class SideInteractor(BaseInteractor): """ Draw an oblique line :param phi: the phase between the middle line and one side line :param theta2: the angle between the middle line and x- axis """ def __init__(self, base, axes, color='black', zorder=5, r=1.0, phi=numpy.pi / 4, theta2=numpy.pi / 3): BaseInteractor.__init__(self, base, axes, color=color) # Initialize the class self.markers = [] self.axes = axes self.color = color # compute the value of the angle between the current line and # the x-axis self.save_theta = theta2 + phi self.theta = theta2 + phi # the value of the middle line angle with respect to the x-axis self.theta2 = theta2 # Radius to find polar coordinates this line's endpoints self.radius = r # phi is the phase between the current line and the middle line self.phi = phi # End points polar coordinates x1 = self.radius * numpy.cos(self.theta) y1 = self.radius * numpy.sin(self.theta) x2 = -1 * self.radius * numpy.cos(self.theta) y2 = -1 * self.radius * numpy.sin(self.theta) # Defining a new marker self.inner_marker = self.axes.plot([x1 / 2.5], [y1 / 2.5], linestyle='', marker='s', markersize=10, color=self.color, alpha=0.6, pickradius=5, label="pick", zorder=zorder, visible=True)[0] # Defining the current line self.line = self.axes.plot([x1, x2], [y1, y2], linestyle='-', marker='', color=self.color, visible=True)[0] # Flag to differentiate the left line from the right line motion self.left_moving = False # Flag to define a motion self.has_move = False # connecting markers and draw the picture self.connect_markers([self.inner_marker, self.line])
[docs] def set_layer(self, n): """ Allow adding plot to the same panel :param n: the number of layer """ self.layernum = n self.update()
[docs] def clear(self): """ Clear the slicer and all connected events related to this slicer """ self.clear_markers() try: self.line.remove() self.inner_marker.remove() except: # Old version of matplotlib for item in range(len(self.axes.lines)): del self.axes.lines[0]
[docs] def update(self, phi=None, delta=None, mline=None, side=False, left=False, right=False): """ Draw oblique line :param phi: the phase between the middle line and the current line :param delta: phi/2 applied only when the mline was moved """ self.left_moving = left theta3 = 0 if phi is not None: self.phi = phi if delta is None: delta = 0 if right: self.phi = -1 * numpy.fabs(self.phi) #delta=-delta else: self.phi = numpy.fabs(self.phi) if side: self.theta = mline.theta + self.phi if mline is not None: if delta != 0: self.theta2 = mline + delta else: self.theta2 = mline.theta if delta == 0: theta3 = self.theta + delta else: theta3 = self.theta2 + delta x1 = self.radius * numpy.cos(theta3) y1 = self.radius * numpy.sin(theta3) x2 = -1 * self.radius * numpy.cos(theta3) y2 = -1 * self.radius * numpy.sin(theta3) self.inner_marker.set(xdata=[x1 / 2.5], ydata=[y1 / 2.5]) self.line.set(xdata=[x1, x2], ydata=[y1, y2])
[docs] def save(self, ev): """ Remember the roughness for this layer and the next so that we can restore on Esc. """ self.save_theta = self.theta
[docs] def moveend(self, ev): self.has_move = False self.base.moveend(ev)
[docs] def restore(self): """ Restore the roughness for this layer. """ self.theta = self.save_theta
[docs] def move(self, x, y, ev): """ Process move to a new position, making sure that the move is allowed. """ self.theta = numpy.arctan2(y, x) self.has_move = True if not self.left_moving: if self.theta2 - self.theta <= 0 and self.theta2 > 0: self.restore() return elif self.theta2 < 0 and self.theta < 0 and \ self.theta - self.theta2 >= 0: self.restore() return elif self.theta2 < 0 and self.theta > 0 and \ (self.theta2 + 2 * numpy.pi - self.theta) >= numpy.pi / 2: self.restore() return elif self.theta2 < 0 and self.theta < 0 and \ (self.theta2 - self.theta) >= numpy.pi / 2: self.restore() return elif self.theta2 > 0 and (self.theta2 - self.theta >= numpy.pi / 2 or \ (self.theta2 - self.theta >= numpy.pi / 2)): self.restore() return else: if self.theta < 0 and (self.theta + numpy.pi * 2 - self.theta2) <= 0: self.restore() return elif self.theta2 < 0 and (self.theta - self.theta2) <= 0: self.restore() return elif self.theta > 0 and self.theta - self.theta2 <= 0: self.restore() return elif self.theta - self.theta2 >= numpy.pi / 2 or \ ((self.theta + numpy.pi * 2 - self.theta2) >= numpy.pi / 2 and \ self.theta < 0 and self.theta2 > 0): self.restore() return self.phi = numpy.fabs(self.theta2 - self.theta) if self.phi > numpy.pi: self.phi = 2 * numpy.pi - numpy.fabs(self.theta2 - self.theta) self.base.base.update()
[docs] def set_cursor(self, x, y): self.move(x, y, None) self.update()
[docs] def getParams(self): params = {} params["radius"] = self.radius params["theta"] = self.theta return params
[docs] def setParams(self, params): x = params["radius"] self.set_cursor(x, None)
[docs]class LineInteractor(BaseInteractor): """ Select an annulus through a 2D plot """ def __init__(self, base, axes, color='black', zorder=5, r=1.0, theta=numpy.pi / 4): BaseInteractor.__init__(self, base, axes, color=color) self.markers = [] self.color = color self.axes = axes self.save_theta = theta self.theta = theta self.radius = r self.scale = 10.0 # Inner circle x1 = self.radius * numpy.cos(self.theta) y1 = self.radius * numpy.sin(self.theta) x2 = -1 * self.radius * numpy.cos(self.theta) y2 = -1 * self.radius * numpy.sin(self.theta) # Inner circle marker self.inner_marker = self.axes.plot([x1 / 2.5], [y1 / 2.5], linestyle='', marker='s', markersize=10, color=self.color, alpha=0.6, pickradius=5, label="pick", zorder=zorder, visible=True)[0] self.line = self.axes.plot([x1, x2], [y1, y2], linestyle='-', marker='', color=self.color, visible=True)[0] self.npts = 20 self.has_move = False self.connect_markers([self.inner_marker, self.line]) self.update()
[docs] def set_layer(self, n): self.layernum = n self.update()
[docs] def clear(self): self.clear_markers() try: self.inner_marker.remove() self.line.remove() except: # Old version of matplotlib for item in range(len(self.axes.lines)): del self.axes.lines[0]
[docs] def update(self, theta=None): """ Draw the new roughness on the graph. """ if theta is not None: self.theta = theta x1 = self.radius * numpy.cos(self.theta) y1 = self.radius * numpy.sin(self.theta) x2 = -1 * self.radius * numpy.cos(self.theta) y2 = -1 * self.radius * numpy.sin(self.theta) self.inner_marker.set(xdata=[x1 / 2.5], ydata=[y1 / 2.5]) self.line.set(xdata=[x1, x2], ydata=[y1, y2])
[docs] def save(self, ev): """ Remember the roughness for this layer and the next so that we can restore on Esc. """ self.save_theta = self.theta
[docs] def moveend(self, ev): self.has_move = False self.base.moveend(ev)
[docs] def restore(self): """ Restore the roughness for this layer. """ self.theta = self.save_theta
[docs] def move(self, x, y, ev): """ Process move to a new position, making sure that the move is allowed. """ self.theta = numpy.arctan2(y, x) self.has_move = True self.base.base.update()
[docs] def set_cursor(self, x, y): self.move(x, y, None) self.update()
[docs] def getParams(self): params = {} params["radius"] = self.radius params["theta"] = self.theta return params
[docs] def setParams(self, params): x = params["radius"] self.set_cursor(x, None)