Source code for sas.qtgui.Perspectives.Fitting.FittingLogic

import numpy as np

from sas.qtgui.Plotting.PlotterData import Data1D
from sas.qtgui.Plotting.PlotterData import Data2D

from sas.sascalc.dataloader.data_info import Detector
from sas.sascalc.dataloader.data_info import Source


[docs]class FittingLogic(object): """ All the data-related logic. This class deals exclusively with Data1D/2D No QStandardModelIndex here. """
[docs] def __init__(self, data=None): self._data = data self.data_is_loaded = False #dq data presence in the dataset self.dq_flag = False #di data presence in the dataset self.di_flag = False if data is not None: self.data_is_loaded = True self.setDataProperties()
@property def data(self): return self._data @data.setter def data(self, value): """ data setter """ self._data = value self.data_is_loaded = True self.setDataProperties()
[docs] def isLoadedData(self): """ accessor """ return self.data_is_loaded
[docs] def setDataProperties(self): """ Analyze data and set up some properties important for the Presentation layer """ if self._data.__class__.__name__ == "Data2D": if self._data.err_data is not None and np.any(self._data.err_data): self.di_flag = True if self._data.dqx_data is not None and np.any(self._data.dqx_data): self.dq_flag = True else: if self._data.dy is not None and np.any(self._data.dy): self.di_flag = True if self._data.dx is not None and np.any(self._data.dx): self.dq_flag = True elif self._data.dxl is not None and np.any(self._data.dxl): self.dq_flag = True
[docs] def createDefault1dData(self, interval, tab_id=0): """ Create default data for fitting perspective Only when the page is on theory mode. """ self._data = Data1D(x=interval) self._data.xaxis('\\rm{Q}', "A^{-1}") self._data.yaxis('\\rm{Intensity}', "cm^{-1}") self._data.is_data = False self._data.id = str(tab_id) + " data" self._data.group_id = str(tab_id) + " Model1D"
[docs] def createDefault2dData(self, qmax, qstep, tab_id=0): """ Create 2D data by default Only when the page is on theory mode. """ self._data = Data2D() self._data.xaxis('\\rm{Q_{x}}', 'A^{-1}') self._data.yaxis('\\rm{Q_{y}}', 'A^{-1}') self._data.is_data = False self._data.id = str(tab_id) + " data" self._data.group_id = str(tab_id) + " Model2D" # Default detector self._data.detector.append(Detector()) index = len(self._data.detector) - 1 self._data.detector[index].distance = 8000 # mm self._data.source.wavelength = 6 # A self._data.detector[index].pixel_size.x = 5 # mm self._data.detector[index].pixel_size.y = 5 # mm self._data.detector[index].beam_center.x = qmax self._data.detector[index].beam_center.y = qmax # theory default: assume the beam #center is located at the center of sqr detector xmax = qmax xmin = -qmax ymax = qmax ymin = -qmax x = np.linspace(start=xmin, stop=xmax, num=qstep, endpoint=True) y = np.linspace(start=ymin, stop=ymax, num=qstep, endpoint=True) # Use data info instead new_x = np.tile(x, (len(y), 1)) new_y = np.tile(y, (len(x), 1)) new_y = new_y.swapaxes(0, 1) # all data required in 1d array qx_data = new_x.flatten() qy_data = new_y.flatten() q_data = np.sqrt(qx_data * qx_data + qy_data * qy_data) # set all True (standing for unmasked) as default mask = np.ones(len(qx_data), dtype=bool) # calculate the range of qx and qy: this way, # it is a little more independent # store x and y bin centers in q space x_bins = x y_bins = y self._data.source = Source() self._data.data = np.ones(len(mask)) self._data.err_data = np.ones(len(mask)) self._data.qx_data = qx_data self._data.qy_data = qy_data self._data.q_data = q_data self._data.mask = mask self._data.x_bins = x_bins self._data.y_bins = y_bins # max and min taking account of the bin sizes self._data.xmin = xmin self._data.xmax = xmax self._data.ymin = ymin self._data.ymax = ymax
[docs] def _create1DPlot(self, tab_id, x, y, model, data, component=None): """ For internal use: create a new 1D data instance based on fitting results. 'component' is a string indicating the model component, e.g. "P(Q)" """ # Create the new plot new_plot = Data1D(x=x, y=y) new_plot.is_data = False new_plot.dy = np.zeros(len(y)) _yaxis, _yunit = data.get_yaxis() _xaxis, _xunit = data.get_xaxis() new_plot.group_id = data.group_id new_plot.id = str(tab_id) + " " + ("[" + component + "] " if component else "") + model.id # use data.filename for data, use model.id for theory id_str = data.name if data.name else model.id new_plot.name = model.name + ((" " + component) if component else "") + " [" + id_str + "]" new_plot.title = new_plot.name new_plot.xaxis(_xaxis, _xunit) new_plot.yaxis(_yaxis, _yunit) if component is not None: new_plot.plot_role = Data1D.ROLE_DELETABLE #deletable return new_plot
[docs] def new1DPlot(self, return_data, tab_id): """ Create a new 1D data instance based on fitting results """ return self._create1DPlot(tab_id, return_data['x'], return_data['y'], return_data['model'], return_data['data'])
[docs] def new2DPlot(self, return_data): """ Create a new 2D data instance based on fitting results """ image = return_data['image'] data = return_data['data'] model = return_data['model'] np.nan_to_num(image) new_plot = Data2D(image=image, err_image=data.err_data) new_plot.name = model.name + '2d' new_plot.title = "Analytical model 2D " new_plot.id = str(return_data['page_id']) + " " + data.name new_plot.group_id = str(return_data['page_id']) + " Model2D" new_plot.detector = data.detector new_plot.source = data.source new_plot.is_data = False new_plot.qx_data = data.qx_data new_plot.qy_data = data.qy_data new_plot.q_data = data.q_data new_plot.mask = data.mask ## plot boundaries new_plot.ymin = data.ymin new_plot.ymax = data.ymax new_plot.xmin = data.xmin new_plot.xmax = data.xmax title = data.title new_plot.is_data = False if data.is_data: data_name = str(data.name) else: data_name = str(model.__class__.__name__) + '2d' if len(title) > 1: new_plot.title = "Model2D for %s " % model.name + data_name new_plot.name = model.name + " [" + \ data_name + "]" return new_plot
[docs] def new1DProductPlots(self, return_data, tab_id): """ If return_data contains separated P(Q) and/or S(Q) data, create 1D plots for each and return as the tuple (pq_plot, sq_plot). If either are unavailable, the corresponding plot is None. """ plots = [] for name, result in return_data['intermediate_results'].items(): if isinstance(result, tuple) and len(result) > 1: result = result[1] if not isinstance(result, np.ndarray): continue plots.append(self._create1DPlot(tab_id, return_data['x'], result, return_data['model'], return_data['data'], component=name)) return plots
[docs] def getScalarIntermediateResults(self, return_data): """ Returns a dict of scalar-only intermediate results from the return data. """ res = {} for name, int_res in return_data["intermediate_results"].items(): if isinstance(int_res, np.ndarray): continue res[name] = int_res return res
[docs] def computeDataRange(self): """ Wrapper for calculating the data range based on local dataset """ return self.computeRangeFromData(self.data)
[docs] def computeRangeFromData(self, data): """ Compute the minimum and the maximum range of the data return the npts contains in data """ qmin, qmax, npts = None, None, None if isinstance(data, Data1D): try: qmin = min(data.x) qmax = max(data.x) npts = len(data.x) except (ValueError, TypeError): msg = "Unable to find min/max/length of \n data named %s" % \ self.data.filename raise ValueError(msg) else: qmin = 0 try: x = max(np.fabs(data.xmin), np.fabs(data.xmax)) y = max(np.fabs(data.ymin), np.fabs(data.ymax)) except (ValueError, TypeError): msg = "Unable to find min/max of \n data named %s" % \ self.data.filename raise ValueError(msg) qmax = np.sqrt(x * x + y * y) npts = len(data.data) return qmin, qmax, npts