Source code for sasmodels.sasview_model

"""
Sasview model constructor.

Given a module defining an OpenCL kernel such as sasmodels.models.cylinder,
create a sasview model class to run that kernel as follows::

    from sasmodels.sasview_model import load_custom_model
    CylinderModel = load_custom_model('sasmodels/models/cylinder.py')
"""
from __future__ import print_function

import math
from copy import deepcopy
import collections
import traceback
import logging
from os.path import basename, splitext, abspath
try:
    import _thread as thread
except ImportError:
    import thread

import numpy as np  # type: ignore

from . import core
from . import custom
from . import kernelcl
from . import product
from . import generate
from . import weights
from . import modelinfo
from .details import make_kernel_args, dispersion_mesh

# Hack: load in any custom distributions
# Uses ~/.sasview/weights/*.py unless SASMODELS_WEIGHTS is set in the environ.
# Override with weights.load_weights(pattern="<weights_path>/*.py")
weights.load_weights()

# pylint: disable=unused-import
try:
    from typing import (Dict, Mapping, Any, Sequence, Tuple, NamedTuple,
                        List, Optional, Union, Callable)
    from types import ModuleType
    from .modelinfo import ModelInfo, Parameter
    from .kernel import KernelModel
    MultiplicityInfoType = NamedTuple(
        'MultiplicityInfo',
        [("number", int), ("control", str), ("choices", List[str]),
         ("x_axis_label", str)])
    SasviewModelType = Callable[[int], "SasviewModel"]
except ImportError:
    pass
# pylint: enable=unused-import

logger = logging.getLogger(__name__)

calculation_lock = thread.allocate_lock()

#: True if pre-existing plugins, with the old names and parameters, should
#: continue to be supported.
SUPPORT_OLD_STYLE_PLUGINS = True

# TODO: separate x_axis_label from multiplicity info
MultiplicityInfo = collections.namedtuple(
    'MultiplicityInfo',
    ["number", "control", "choices", "x_axis_label"],
)

#: set of defined models (standard and custom)
MODELS = {}  # type: Dict[str, SasviewModelType]
# TODO: remove unused MODEL_BY_PATH cache once sasview no longer references it
#: custom model {path: model} mapping so we can check timestamps
MODEL_BY_PATH = {}  # type: Dict[str, SasviewModelType]
#: Track modules that we have loaded so we can determine whether the model
#: has changed since we last reloaded.
_CACHED_MODULE = {}  # type: Dict[str, ModuleType]

[docs]def reset_environment(): # type: () -> None """ Clear the compute engine context so that the GUI can change devices. This removes all compiled kernels, even those that are active on fit pages, but they will be restored the next time they are needed. """ kernelcl.reset_environment() for model in MODELS.values(): model._model = None
[docs]def find_model(modelname): # type: (str) -> SasviewModelType """ Find a model by name. If the model name ends in py, try loading it from custom models, otherwise look for it in the list of builtin models. """ # TODO: used by sum/product model to load an existing model # TODO: doesn't handle custom models properly if modelname.endswith('.py'): return load_custom_model(modelname) elif modelname in MODELS: return MODELS[modelname] else: raise ValueError("unknown model %r"%modelname)
# TODO: figure out how to say that the return type is a subclass
[docs]def load_standard_models(): # type: () -> List[SasviewModelType] """ Load and return the list of predefined models. If there is an error loading a model, then a traceback is logged and the model is not returned. """ for name in core.list_models(): try: MODELS[name] = _make_standard_model(name) except Exception: logger.error(traceback.format_exc()) if SUPPORT_OLD_STYLE_PLUGINS: _register_old_models() return list(MODELS.values())
[docs]def load_custom_model(path): # type: (str) -> SasviewModelType """ Load a custom model given the model path. """ #logger.info("Loading model %s", path) # Load the kernel module. This may already be cached by the loader, so # only requires checking the timestamps of the dependents. kernel_module = custom.load_custom_kernel_module(path) # Check if the module has changed since we last looked. reloaded = kernel_module != _CACHED_MODULE.get(path, None) _CACHED_MODULE[path] = kernel_module # Turn the module into a model. We need to do this in even if the # model has already been loaded so that we can determine the model # name and retrieve it from the MODELS cache. model = getattr(kernel_module, 'Model', None) if model is not None: # Old style models do not set the name in the class attributes, so # set it here; this name will be overridden when the object is created # with an instance variable that has the same value. if model.name == "": model.name = splitext(basename(path))[0] if not hasattr(model, 'filename'): model.filename = abspath(kernel_module.__file__).replace('.pyc', '.py') if not hasattr(model, 'id'): model.id = splitext(basename(model.filename))[0] else: model_info = modelinfo.make_model_info(kernel_module) model = make_model_from_info(model_info) # If a model name already exists and we are loading a different model, # use the model file name as the model name. if model.name in MODELS and not model.filename == MODELS[model.name].filename: _previous_name = model.name model.name = model.id # If the new model name is still in the model list (for instance, # if we put a cylinder.py in our plug-in directory), then append # an identifier. if model.name in MODELS and not model.filename == MODELS[model.name].filename: model.name = model.id + '_user' logger.info("Model %s already exists: using %s [%s]", _previous_name, model.name, model.filename) # Only update the model if the module has changed if reloaded or model.name not in MODELS: MODELS[model.name] = model return MODELS[model.name]
[docs]def make_model_from_info(model_info): # type: (ModelInfo) -> SasviewModelType """ Convert *model_info* into a SasView model wrapper. """ def __init__(self, multiplicity=None): SasviewModel.__init__(self, multiplicity=multiplicity) attrs = _generate_model_attributes(model_info) attrs['__init__'] = __init__ attrs['filename'] = model_info.filename ConstructedModel = type(model_info.name, (SasviewModel,), attrs) # type: SasviewModelType return ConstructedModel
[docs]def _make_standard_model(name): # type: (str) -> SasviewModelType """ Load the sasview model defined by *name*. *name* can be a standard model name or a path to a custom model. Returns a class that can be used directly as a sasview model. """ kernel_module = generate.load_kernel_module(name) model_info = modelinfo.make_model_info(kernel_module) return make_model_from_info(model_info)
[docs]def _register_old_models(): # type: () -> None """ Place the new models into sasview under the old names. Monkey patch sas.sascalc.fit as sas.models so that sas.models.pluginmodel is available to the plugin modules. """ import sys import sas # needed in order to set sas.models import sas.sascalc.fit sys.modules['sas.models'] = sas.sascalc.fit sas.models = sas.sascalc.fit import sas.models from sasmodels.conversion_table import CONVERSION_TABLE for new_name, conversion in CONVERSION_TABLE.get((3, 1, 2), {}).items(): # CoreShellEllipsoidModel => core_shell_ellipsoid:1 new_name = new_name.split(':')[0] old_name = conversion[0] if len(conversion) < 3 else conversion[2] module_attrs = {old_name: find_model(new_name)} ConstructedModule = type(old_name, (), module_attrs) old_path = 'sas.models.' + old_name setattr(sas.models, old_path, ConstructedModule) sys.modules[old_path] = ConstructedModule
[docs]def MultiplicationModel(form_factor, structure_factor): # type: ("SasviewModel", "SasviewModel") -> "SasviewModel" """ Returns a constructed product model from form_factor and structure_factor. """ model_info = product.make_product_info(form_factor._model_info, structure_factor._model_info) ConstructedModel = make_model_from_info(model_info) return ConstructedModel(form_factor.multiplicity)
[docs]def _generate_model_attributes(model_info): # type: (ModelInfo) -> Dict[str, Any] """ Generate the class attributes for the model. This should include all the information necessary to query the model details so that you do not need to instantiate a model to query it. All the attributes should be immutable to avoid accidents. """ # TODO: allow model to override axis labels input/output name/unit # Process multiplicity control_pars = [p.id for p in model_info.parameters.kernel_parameters if p.is_control] control_id = control_pars[0] if control_pars else None non_fittable = [] # type: List[str] xlabel = model_info.profile_axes[0] if model_info.profile is not None else "" variants = MultiplicityInfo(0, "", [], xlabel) for p in model_info.parameters.kernel_parameters: if p.id == control_id: non_fittable.append(p.name) variants = MultiplicityInfo( len(p.choices) if p.choices else int(p.limits[1]), p.name, p.choices, xlabel ) break # Only a single drop-down list parameter available fun_list = [] for p in model_info.parameters.kernel_parameters: if p.choices: fun_list = p.choices if p.length > 1: non_fittable.extend(p.id+str(k) for k in range(1, p.length+1)) break # Organize parameter sets orientation_params = [] magnetic_params = [] fixed = [] for p in model_info.parameters.user_parameters({}, is2d=True): if p.type == 'orientation': orientation_params.append(p.name) orientation_params.append(p.name+".width") fixed.append(p.name+".width") elif p.type == 'magnetic': orientation_params.append(p.name) magnetic_params.append(p.name) fixed.append(p.name+".width") # Build class dictionary attrs = {} # type: Dict[str, Any] attrs['_model_info'] = model_info attrs['name'] = model_info.name attrs['id'] = model_info.id attrs['description'] = model_info.description attrs['category'] = model_info.category attrs['is_structure_factor'] = model_info.structure_factor attrs['is_form_factor'] = model_info.radius_effective_modes is not None attrs['is_multiplicity_model'] = variants[0] > 1 attrs['multiplicity_info'] = variants attrs['orientation_params'] = tuple(orientation_params) attrs['magnetic_params'] = tuple(magnetic_params) attrs['fixed'] = tuple(fixed) attrs['non_fittable'] = tuple(non_fittable) attrs['fun_list'] = tuple(fun_list) return attrs
[docs]class SasviewModel(object): """ Sasview wrapper for opencl/ctypes model. """ # Model parameters for the specific model are set in the class constructor # via the _generate_model_attributes function, which subclasses # SasviewModel. They are included here for typing and documentation # purposes. _model = None # type: KernelModel _model_info = None # type: ModelInfo #: load/save name for the model id = None # type: str #: display name for the model name = None # type: str #: short model description description = None # type: str #: default model category category = None # type: str #: names of the orientation parameters in the order they appear orientation_params = None # type: List[str] #: names of the magnetic parameters in the order they appear magnetic_params = None # type: List[str] #: names of the fittable parameters fixed = None # type: List[str] # TODO: the attribute fixed is ill-named # Axis labels input_name = "Q" input_unit = "A^{-1}" output_name = "Intensity" output_unit = "cm^{-1}" #: default cutoff for polydispersity cutoff = 1e-5 # Note: Use non-mutable values for class attributes to avoid errors #: parameters that are not fitted non_fittable = () # type: Sequence[str] #: True if model should appear as a structure factor is_structure_factor = False #: True if model should appear as a form factor is_form_factor = False #: True if model has multiplicity is_multiplicity_model = False #: Multiplicity information multiplicity_info = None # type: MultiplicityInfoType # Per-instance variables #: parameter {name: value} mapping params = None # type: Dict[str, float] #: values for dispersion width, npts, nsigmas and type dispersion = None # type: Dict[str, Any] #: units and limits for each parameter details = None # type: Dict[str, Sequence[Any]] # # actual type is Dict[str, List[str, float, float]] #: multiplicity value, or None if no multiplicity on the model multiplicity = None # type: Optional[int] #: memory for polydispersity array if using ArrayDispersion (used by sasview). _persistency_dict = None # type: Dict[str, Tuple[np.ndarray, np.ndarray]]
[docs] def __init__(self, multiplicity=None): # type: (Optional[int]) -> None # TODO: _persistency_dict to persistency_dict throughout sasview # TODO: refactor multiplicity to encompass variants # TODO: dispersion should be a class # TODO: refactor multiplicity info # TODO: separate profile view from multiplicity # The button label, x and y axis labels and scale need to be under # the control of the model, not the fit page. Maximum flexibility, # the fit page would supply the canvas and the profile could plot # how it wants, but this assumes matplotlib. Next level is that # we provide some sort of data description including title, labels # and lines to plot. # Get the list of hidden parameters given the multiplicity # Don't include multiplicity in the list of parameters self.multiplicity = multiplicity if multiplicity is not None: hidden = self._model_info.get_hidden_parameters(multiplicity) hidden |= set([self.multiplicity_info.control]) else: hidden = set() if self._model_info.structure_factor: hidden.add('scale') hidden.add('background') # Update the parameter lists to exclude any hidden parameters self.magnetic_params = tuple(pname for pname in self.magnetic_params if pname not in hidden) self.orientation_params = tuple(pname for pname in self.orientation_params if pname not in hidden) self._persistency_dict = {} self.params = collections.OrderedDict() self.dispersion = collections.OrderedDict() self.details = {} for p in self._model_info.parameters.user_parameters({}, is2d=True): if p.name in hidden: continue self.params[p.name] = p.default self.details[p.id] = [p.units, p.limits[0], p.limits[1]] if p.polydisperse: self.details[p.id+".width"] = [ "", 0.0, 1.0 if p.relative_pd else np.inf ] self.dispersion[p.name] = { 'width': 0, 'npts': 35, 'nsigmas': 3, 'type': 'gaussian', }
[docs] def __get_state__(self): # type: () -> Dict[str, Any] state = self.__dict__.copy() state.pop('_model') # May need to reload model info on set state since it has pointers # to python implementations of Iq, etc. #state.pop('_model_info') return state
[docs] def __set_state__(self, state): # type: (Dict[str, Any]) -> None self.__dict__ = state # pylint: disable=attribute-defined-outside-init self._model = None
[docs] def __str__(self): # type: () -> str """ :return: string representation """ return self.name
[docs] def is_fittable(self, par_name): # type: (str) -> bool """ Check if a given parameter is fittable or not :param par_name: the parameter name to check """ return par_name in self.fixed
#For the future #return self.params[str(par_name)].is_fittable()
[docs] def getProfile(self): # type: () -> Tuple[np.ndarray, np.ndarray] """ Get SLD profile : return: (z, beta) where z is a list of depth of the transition points beta is a list of the corresponding SLD values """ args = {} # type: Dict[str, Any] for p in self._model_info.parameters.kernel_parameters: if p.id == self.multiplicity_info.control: value = float(self.multiplicity) elif p.length == 1: value = self.params.get(p.id, np.NaN) else: value = np.array([self.params.get(p.id+str(k), np.NaN) for k in range(1, p.length+1)]) args[p.id] = value x, y = self._model_info.profile(**args) return x, 1e-6*y
[docs] def setParam(self, name, value): # type: (str, float) -> None """ Set the value of a model parameter :param name: name of the parameter :param value: value of the parameter """ # Look for dispersion parameters toks = name.split('.') if len(toks) == 2: for item in self.dispersion.keys(): if item == toks[0]: for par in self.dispersion[item]: if par == toks[1]: self.dispersion[item][par] = value return else: # Look for standard parameter for item in self.params.keys(): if item == name: self.params[item] = value return raise ValueError("Model does not contain parameter %s" % name)
[docs] def getParam(self, name): # type: (str) -> float """ Set the value of a model parameter :param name: name of the parameter """ # Look for dispersion parameters toks = name.split('.') if len(toks) == 2: for item in self.dispersion.keys(): if item == toks[0]: for par in self.dispersion[item]: if par == toks[1]: return self.dispersion[item][par] else: # Look for standard parameter for item in self.params.keys(): if item == name: return self.params[item] raise ValueError("Model does not contain parameter %s" % name)
[docs] def getParamList(self): # type: () -> Sequence[str] """ Return a list of all available parameters for the model """ param_list = list(self.params.keys()) # WARNING: Extending the list with the dispersion parameters param_list.extend(self.getDispParamList()) return param_list
[docs] def getDispParamList(self): # type: () -> Sequence[str] """ Return a list of polydispersity parameters for the model """ # TODO: fix test so that parameter order doesn't matter ret = ['%s.%s' % (p_name, ext) for p_name in self.dispersion.keys() for ext in ('npts', 'nsigmas', 'width')] #print(ret) return ret
[docs] def clone(self): # type: () -> "SasviewModel" """ Return a identical copy of self """ return deepcopy(self)
[docs] def run(self, x=0.0): # type: (Union[float, Tuple[float, float], Sequence[float]]) -> float """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) **DEPRECATED**: use calculate_Iq instead """ if isinstance(x, (list, tuple)): # pylint: disable=unpacking-non-sequence q, phi = x result, _ = self.calculate_Iq([q*math.cos(phi)], [q*math.sin(phi)]) return result[0] else: result, _ = self.calculate_Iq([x]) return result[0]
[docs] def runXY(self, x=0.0): # type: (Union[float, [float, float], Sequence[float]]) -> float """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) **DEPRECATED**: use calculate_Iq instead """ if isinstance(x, (list, tuple)): result, _ = self.calculate_Iq([x[0]], [x[1]]) return result[0] else: result, _ = self.calculate_Iq([x]) return result[0]
[docs] def evalDistribution(self, qdist): # type: (Union[np.ndarray, Tuple[np.ndarray, np.ndarray], List[np.ndarray]]) -> np.ndarray r""" Evaluate a distribution of q-values. :param qdist: array of q or a list of arrays [qx,qy] * For 1D, a numpy array is expected as input :: evalDistribution(q) where *q* is a numpy array. * For 2D, a list of *[qx,qy]* is expected with 1D arrays as input :: qx = [ qx[0], qx[1], qx[2], ....] qy = [ qy[0], qy[1], qy[2], ....] If the model is 1D only, then .. math:: q = \sqrt{q_x^2+q_y^2} """ if isinstance(qdist, (list, tuple)): # Check whether we have a list of ndarrays [qx,qy] qx, qy = qdist result, _ = self.calculate_Iq(qx, qy) return result elif isinstance(qdist, np.ndarray): # We have a simple 1D distribution of q-values result, _ = self.calculate_Iq(qdist) return result else: raise TypeError("evalDistribution expects q or [qx, qy], not %r" % type(qdist))
[docs] def calc_composition_models(self, qx): """ returns parts of the composition model or None if not a composition model. """ # TODO: have calculate_Iq return the intermediates. # # The current interface causes calculate_Iq() to be called twice, # once to get the combined result and again to get the intermediate # results. This is necessary for now. # Long term, the solution is to change the interface to calculate_Iq # so that it returns a results object containing all the bits: # the A, B, C, ... of the composition model (and any subcomponents?) # the P and S of the product model # the combined model before resolution smearing, # the sasmodel before sesans conversion, # the oriented 2D model used to fit oriented usans data, # the final I(q), # ... # # Have the model calculator add all of these blindly to the data # tree, and update the graphs which contain them. The fitter # needs to be updated to use the I(q) value only, ignoring the rest. # # The simple fix of returning the existing intermediate results # will not work for a couple of reasons: (1) another thread may # sneak in to compute its own results before calc_composition_models # is called, and (2) calculate_Iq is currently called three times: # once with q, once with q values before qmin and once with q values # after q max. Both of these should be addressed before # replacing this code. composition = self._model_info.composition if composition and composition[0] == 'product': # only P*S for now with calculation_lock: _, lazy_results = self._calculate_Iq(qx) # for compatibility with sasview 4.x results = lazy_results() pq_data = results.get("P(Q)")[1] sq_data = results.get("S(Q)")[1] return pq_data, sq_data else: return None
[docs] def calculate_Iq(self, qx, qy=None): # type: (Sequence[float], Optional[Sequence[float]]) -> Tuple[np.ndarray, Callable[[], collections.OrderedDict[str, np.ndarray]]] """ Calculate Iq for one set of q with the current parameters. If the model is 1D, use *q*. If 2D, use *qx*, *qy*. This should NOT be used for fitting since it copies the *q* vectors to the card for each evaluation. The returned tuple contains the scattering intensity followed by a callable which returns a dictionary of intermediate data from ProductKernel. """ ## uncomment the following when trying to debug the uncoordinated calls ## to calculate_Iq #if calculation_lock.locked(): # logger.info("calculation waiting for another thread to complete") # logger.info("\n".join(traceback.format_stack())) with calculation_lock: return self._calculate_Iq(qx, qy)
[docs] def _calculate_Iq(self, qx, qy=None): if self._model is None: # Only need one copy of the compiled kernel regardless of how many # times it is used, so store it in the class. Also, to reset the # compute engine, need to clear out all existing compiled kernels, # which is much easier to do if we store them in the class. self.__class__._model = core.build_model(self._model_info) if qy is not None: q_vectors = [np.asarray(qx), np.asarray(qy)] else: q_vectors = [np.asarray(qx)] calculator = self._model.make_kernel(q_vectors) parameters = self._model_info.parameters pairs = [self._get_weights(p) for p in parameters.call_parameters] #weights.plot_weights(self._model_info, pairs) call_details, values, is_magnetic = make_kernel_args(calculator, pairs) #call_details.show() #print("================ parameters ==================") #for p, v in zip(parameters.call_parameters, pairs): print(p.name, v[0]) #for k, p in enumerate(self._model_info.parameters.call_parameters): # print(k, p.name, *pairs[k]) #print("params", self.params) #print("values", values) #print("is_mag", is_magnetic) result = calculator(call_details, values, cutoff=self.cutoff, magnetic=is_magnetic) lazy_results = getattr(calculator, 'results', lambda: collections.OrderedDict()) #print("result", result) calculator.release() #self._model.release() return result, lazy_results
[docs] def calculate_ER(self, mode=1): # type: (int) -> float """ Calculate the effective radius for P(q)*S(q) *mode* is the R_eff type, which defaults to 1 to match the ER calculation for sasview models from version 3.x. :return: the value of the effective radius """ # ER and VR are only needed for old multiplication models, based on # sas.sascalc.fit.MultiplicationModel. Fail for now. If we want to # continue supporting them then add some test cases so that the code # is exercised. We can access ER/VR using the kernel Fq function by # extending _calculate_Iq so that it calls: # if er_mode > 0: # res = calculator.Fq(call_details, values, cutoff=self.cutoff, # magnetic=False, radius_effective_mode=mode) # R_eff, form_shell_ratio = res[2], res[4] # return R_eff, form_shell_ratio # Then use the following in calculate_ER: # ER, VR = self._calculate_Iq(q=[0.1], er_mode=mode) # return ER # Similarly, for calculate_VR: # ER, VR = self._calculate_Iq(q=[0.1], er_mode=1) # return VR # Obviously a combined calculate_ER_VR method would be better, but # we only need them to support very old models, so ignore the 2x # performance hit. raise NotImplementedError("ER function is no longer available.")
[docs] def calculate_VR(self): # type: () -> float """ Calculate the volf ratio for P(q)*S(q) :return: the value of the form:shell volume ratio """ # See comments in calculate_ER. raise NotImplementedError("VR function is no longer available.")
[docs] def set_dispersion(self, parameter, dispersion): # type: (str, weights.Dispersion) -> None """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type Dispersion """ if parameter in self.params: # TODO: Store the disperser object directly in the model. # The current method of relying on the sasview GUI to # remember them is kind of funky. # Note: can't seem to get disperser parameters from sasview # (1) Could create a sasview model that has not yet been # converted, assign the disperser to one of its polydisperse # parameters, then retrieve the disperser parameters from the # sasview model. # (2) Could write a disperser parameter retriever in sasview. # (3) Could modify sasview to use sasmodels.weights dispersers. # For now, rely on the fact that the sasview only ever uses # new dispersers in the set_dispersion call and create a new # one instead of trying to assign parameters. self.dispersion[parameter] = dispersion.get_pars() else: raise ValueError("%r is not a dispersity or orientation parameter" % parameter)
[docs] def _dispersion_mesh(self): # type: () -> List[Tuple[np.ndarray, np.ndarray]] """ Create a mesh grid of dispersion parameters and weights. Returns [p1,p2,...],w where pj is a vector of values for parameter j and w is a vector containing the products for weights for each parameter set in the vector. """ pars = [self._get_weights(p) for p in self._model_info.parameters.call_parameters if p.type == 'volume'] return dispersion_mesh(self._model_info, pars)
[docs] def _get_weights(self, par): # type: (Parameter) -> Tuple[np.ndarray, np.ndarray] """ Return dispersion weights for parameter """ if par.name not in self.params: if par.id == self.multiplicity_info.control: return self.multiplicity, [self.multiplicity], [1.0] else: # For hidden parameters use default values. This sets # scale=1 and background=0 for structure factors default = self._model_info.parameters.defaults.get(par.name, np.NaN) return default, [default], [1.0] elif par.polydisperse: value = self.params[par.name] dis = self.dispersion[par.name] if dis['type'] == 'array': dispersity, weight = dis['values'], dis['weights'] else: dispersity, weight = weights.get_weights( dis['type'], dis['npts'], dis['width'], dis['nsigmas'], value, par.limits, par.relative_pd) return value, dispersity, weight else: value = self.params[par.name] return value, [value], [1.0]
[docs] @classmethod def runTests(cls): """ Run any tests built into the model and captures the test output. Returns success flag and output """ from .model_test import check_model return check_model(cls._model_info)
[docs]def test_cylinder(): # type: () -> float """ Test that the cylinder model runs, returning the value at [0.1,0.1]. """ Cylinder = _make_standard_model('cylinder') cylinder = Cylinder() return cylinder.evalDistribution([0.1, 0.1])
[docs]def test_structure_factor(): # type: () -> float """ Test that 2-D hardsphere model runs and doesn't produce NaN. """ Model = _make_standard_model('hardsphere') model = Model() value2d = model.evalDistribution([0.1, 0.1]) value1d = model.evalDistribution(np.array([0.1*np.sqrt(2)])) #print("hardsphere", value1d, value2d) if np.isnan(value1d) or np.isnan(value2d): raise ValueError("hardsphere returns nan")
[docs]def test_product(): # type: () -> float """ Test that 2-D hardsphere model runs and doesn't produce NaN. """ S = _make_standard_model('hayter_msa')() P = _make_standard_model('cylinder')() model = MultiplicationModel(P, S) model.setParam(product.RADIUS_MODE_ID, 1.0) value = model.evalDistribution([0.1, 0.1]) if np.isnan(value): raise ValueError("cylinder*hatyer_msa returns null")
[docs]def test_rpa(): # type: () -> float """ Test that the 2-D RPA model runs """ RPA = _make_standard_model('rpa') rpa = RPA(3) return rpa.evalDistribution([0.1, 0.1])
[docs]def test_empty_distribution(): # type: () -> None """ Make sure that sasmodels returns NaN when there are no polydispersity points """ Cylinder = _make_standard_model('cylinder') cylinder = Cylinder() cylinder.setParam('radius', -1.0) cylinder.setParam('background', 0.) Iq = cylinder.evalDistribution(np.asarray([0.1])) assert Iq[0] == 0., "empty distribution fails"
[docs]def test_model_list(): # type: () -> None """ Make sure that all models build as sasview models """ from .exception import annotate_exception for name in core.list_models(): try: _make_standard_model(name) except: annotate_exception("when loading "+name) raise
[docs]def test_old_name(): # type: () -> None """ Load and run cylinder model as sas.models.CylinderModel """ if not SUPPORT_OLD_STYLE_PLUGINS: return try: # if sasview is not on the path then don't try to test it import sas # pylint: disable=unused-import except ImportError: return load_standard_models() from sas.models.CylinderModel import CylinderModel CylinderModel().evalDistribution([0.1, 0.1])
[docs]def test_structure_factor_background(): # type: () -> None """ Check that sasview model and direct model match, with background=0. """ from .data import empty_data1D from .core import load_model_info, build_model from .direct_model import DirectModel model_name = "hardsphere" q = [0.0] sasview_model = _make_standard_model(model_name)() sasview_value = sasview_model.evalDistribution(np.array(q))[0] data = empty_data1D(q) model_info = load_model_info(model_name) model = build_model(model_info) direct_model = DirectModel(data, model) direct_value_zero_background = direct_model(background=0.0) assert sasview_value == direct_value_zero_background # Additionally check that direct value background defaults to zero direct_value_default = direct_model() assert sasview_value == direct_value_default
[docs]def magnetic_demo(): """ Demostrate call to magnetic model. """ Model = _make_standard_model('sphere') model = Model() model.setParam('sld_M0', 8) q = np.linspace(-0.35, 0.35, 500) qx, qy = np.meshgrid(q, q) result, _ = model.calculate_Iq(qx.flatten(), qy.flatten()) result = result.reshape(qx.shape) import pylab pylab.imshow(np.log(result + 0.001)) pylab.show()
if __name__ == "__main__": print("cylinder(0.1,0.1)=%g"%test_cylinder()) #magnetic_demo() #test_product() #test_structure_factor() #print("rpa:", test_rpa()) #test_empty_distribution() #test_structure_factor_background()