onion

Onion shell model with constant, linear or exponential density

Parameter

Description

Units

Default value

scale

Scale factor or Volume fraction

None

1

background

Source background

cm-1

0.001

sld_core

Core scattering length density

10-6-2

1

radius_core

Radius of the core

200

sld_solvent

Solvent scattering length density

10-6-2

6.4

n_shells

number of shells (must be integer)

None

1

sld_in[n_shells]

scattering length density at the inner radius of shell k

10-6-2

1.7

sld_out[n_shells]

scattering length density at the outer radius of shell k

10-6-2

2

thickness[n_shells]

Thickness of shell k

40

A[n_shells]

Decay rate of shell k

None

1

The returned value is scaled to units of cm-1 sr-1, absolute scale.

This model provides the form factor, P(q), for a multi-shell sphere where the scattering length density (SLD) of each shell is described by an exponential, linear, or constant function. The form factor is normalized by the volume of the sphere where the SLD is not identical to the SLD of the solvent. We currently provide up to 9 shells with this model.

Note

radius represents the core radius r0 and thickness[k] represents the thickness of the shell, rk+1rk.

Definition

The 1D scattering intensity is calculated in the following way

P(q)=[f]2/Vparticle

where

f=fcore+(Nshell=1fshell)+fsolvent

The shells are spherically symmetric with particle density ρ(r) and constant SLD within the core and solvent, so

fcore=4πrcore0ρcoresin(qr)qrr2dr=3ρcoreV(rcore)j1(qrcore)qrcorefshell=4πrshellrshell1ρshell(r)sin(qr)qrr2drfsolvent=4πrNρsolventsin(qr)qrr2dr=3ρsolventV(rN)j1(qrN)qrN

where the spherical Bessel function j1 is

j1(x)=sin(x)x2cos(x)x

and the volume is V(r)=4π3r3.

The volume of the particle is determined by the radius of the outer shell, so Vparticle=V(rN).

Now consider the SLD of a shell defined by

ρshell(r)={Bexp(A(rrshell1)/Δtshell)+Cfor A0ρin=constantfor A=0

An example of a possible SLD profile is shown below where ρin and Δtshell stand for the SLD of the inner side of the kth shell and the thickness of the kth shell in the equation above, respectively.

../../_images/onion_geometry.png

Fig. 87 Example of an onion model profile.

Exponential SLD profiles (A>0 or A<0):

fshell=4πrshellrshell1[Bexp(A(rrshell1)/Δtshell)+C]sin(qr)qrr2dr=3BV(rshell)eAh(αout,βout)3BV(rshell1)h(αin,βin)+3CV(rshell)j1(βout)βout3CV(rshell1)j1(βin)βin

where

B=ρoutρineA1C=ρineAρouteA1αin=Arshell1Δtshellαout=ArshellΔtshellβin=qrshell1βout=qrshell

and

h(x,y)=xsin(y)ycos(y)(x2+y2)y(x2y2)sin(y)2xycos(y)(x2+y2)2y

Linear SLD profile (A0):

For small A, say, A=0.0001, the function converges to that of of a linear SLD profile with

ρshell(r)A(rrshell1)/Δtshell)+B,

which is equivalent to

fshell=3V(rshell)ΔρshellΔtshell[2cos(qrout)+qroutsin(qrout)(qrout)4]3V(rshell)ΔρshellΔtshell[2cos(qrin)+qrinsin(qrin)(qrin)4]+3ρoutV(rshell)j1(qrout)qrout3ρinV(rshell1)j1(qrin)qrin

Constant SLD (A=0):

When A=0 the exponential function has no dependence on the radius (meaning ρout is ignored in this case) and becomes flat. We set the constant to ρin for convenience, and thus the form factor contributed by the shells is

fshell=3ρinV(rshell)j1(qrout)qrout3ρinV(rshell1)j1(qrin)qrin

The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the q vector which is defined as

q=q2x+q2y

NB: The outer most radius is used as the effective radius for S(q) when P(q)S(q) is applied.

../../_images/onion_autogenfig.png

Fig. 88 1D plot corresponding to the default parameters of the model.

Source

onion.py    onion.c    sas_3j1x_x.c

References

  1. L A Feigin and D I Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering, Plenum Press, New York, 1987.

Authorship and Verification

  • Author:

  • Last Modified by:

  • Last Reviewed by: Steve King Date: March 28, 2019