pringle

The Pringle model provides the form factor, P(q), for a ‘pringle’ or ‘saddle-shaped’ disc that is bent in two directions.

Parameter

Description

Units

Default value

scale

Scale factor or Volume fraction

None

1

background

Source background

cm-1

0.001

radius

Pringle radius

60

thickness

Thickness of pringle

10

alpha

Curvature parameter alpha

None

0.001

beta

Curvature paramter beta

None

0.02

sld

Pringle sld

10-6-2

1

sld_solvent

Solvent sld

10-6-2

6.3

The returned value is scaled to units of cm-1 sr-1, absolute scale.

Definition

The form factor for this bent disc is essentially that of a hyperbolic paraboloid and calculated as

P(q)=(Δρ)2Vπ/20dψsinψsinc2(qdcosψ2)[(S20+C20)+2n=1(S2n+C2n)]

where

Cn=1r2R0rdrcos(qr2αcosψ)Jn(qr2βcosψ)J2n(qrsinψ)
Sn=1r2R0rdrsin(qr2αcosψ)Jn(qr2βcosψ)J2n(qrsinψ)

and Δρ is ρpringleρsolvent, V is the volume of the disc, ψ is the angle between the normal to the disc and the q vector, d and R are the “pringle” thickness and radius respectively, α and β are the two curvature parameters, and Jn is the nth order Bessel function of the first kind.

../../_images/pringles_fig1.png

Fig. 34 Schematic of model shape (Graphic from Matt Henderson, matt@matthen.com)

../../_images/pringle_autogenfig.png

Fig. 35 1D plot corresponding to the default parameters of the model.

Source

pringle.py    pringle.c    gauss76.c    sas_JN.c    sas_J1.c    sas_J0.c    polevl.c

Reference

  1. Karen Edler, Universtiy of Bath, Private Communication. 2012. Derivation by Stefan Alexandru Rautu.

    1. Onsager, Ann. New York Acad. Sci., 51 (1949) 627-659

Authorship and Verification

  • Author: Andrew Jackson Date: 2008

  • Last Modified by: Wojciech Wpotrzebowski Date: March 20, 2016

  • Last Reviewed by: Andrew Jackson Date: September 26, 2016