
SasView Tutorials

Modifying Weights
in SasView Version 6

www.sasview.org

1/3

±

3



Preamble

SasView was originally developed by the University of Tennessee as part of the Distributed
Data  Analysis  of  Neutron  Scattering  Experiments  (DANSE)  project  funded  by  the  US
National Science Foundation (NSF), but is currently being developed as an Open Source
project  hosted  on  GitHub  and  managed  by  a  consortium  of  scattering  facilities.
Participating facilities  include  (in alphabetical  order):  the Australian National  Science &
Technology  Centre  for  Neutron  Scattering, the  Diamond  Light  Source,  the  European
Spallation Source,  the  Federal  Institute for Materials Research and Testing,  the Institut
Laue  Langevin,  the  ISIS  Pulsed  Neutron  &  Muon  Source,  the  National  Institute  of
Standards & Technology Center for Neutron Research, the Oak Ridge National Laboratory
Neutron Sciences Directorate, and the Technical University Delft Reactor Institute.

SasView is distributed under a 'Three-clause' BSD licence which you may read here:
https://github.com/SasView/sasview/blob/master/LICENSE.TXT 

SasView is free to download and use, including for commercial purposes.

© 2009-2024 UMD, UTK, NIST, ORNL, ISIS, ESS, ANSTO, ILL, TUD, DLS, BAM

If you make use of SasView

If you use SasView to do productive scientific research that leads to a publication, we ask
that you acknowledge use of the program with the following text:

This  work  benefited  from  the  use  of  the  SasView  application,  originally
developed under NSF Award DMR-0520547. SasView also contains code
developed with funding from the EU Horizon 2020 programme under the
SINE2020 project Grant No 654000.
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As a  pre-requisite  to  this  tutorial  is  is  assumed that  the  reader  is  familiar  with  using
SasView  to  simultaneously  fit  datasets  as  covered  in  the  tutorial
simultaneous_1d_fitting_in_sasview.

The program interface shown in  this  tutorial  is  a  pre-release development  version of
SasView  Version  6.0.0  running  on  a  Windows  platform  but,  apart  from  a  few  small
differences in look and functionality, this tutorial is generally applicable to any version of
SasView Version 6.x on any platform. 

The functionality described in this tutorial  is not available in earlier versions of
SasView.
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Learning Objectives 

This tutorial shows how to modify the weights of the data sets when performing a simultaneous 

fit in order to “enhance” or “decrease” the influence of one or several of them and “drive” the 

fit to a desired answer. 

 

Warning 

Ideally, this option should never be used! The fitting algorithm will use all the data points, and 

even if a particular data set has more points or smaller errors and therefore has a larger influence 

in determining the total 2, the information provided by the additional data sets should be 

enough to allow the fitting algorithm to find the best solution. The problem arises when there is 

not a unique solution that works equally well for all data sets. This could be an indication of 

systematic errors, ill-defined resolution functions, problems with sample preparation, etc. In this 

case, if one of the sets dominates the fitting (usually because it has a much larger number of 

points and/or much smaller relative errors, which happens often when combining neutron and 

x-ray data), the solution found will often be close to the optimal solution for that set, while the 

other data sets are mostly ignored. In such cases, it is recommended to check first for all possible 

causes of discrepancies between the data sets and ensure that all the sets to be treated 

simultaneously can be fitted with a unique model and a compatible set of parameters. Only then, 

if one has good reasons to think that the influence of a given set should be enhanced in order to 

provide additional physical insight for one parameter, should the option to modify the weights 

be used with the needed care. 

 

To do  

It would be great to adding an example using real experimental data. But it should be relatively 

simple and instructive. Any ideas? 

 

  



Data sets 

In order to demonstrate how to use this option, we will use five sets of synthetic data, 

corresponding to a core-shell model and generated under well-controlled conditions. The 

parameters employed to generate the 5 data sets are given in the following table: 

 M1 M2 M3 M4 M5 

Parameter n_coreshell.txt x_coreshell_1.txt x_coreshell_2.txt x_coreshell_3.txt x_coreshell_4.txt 

scale 0.010 0.010 0.012 0.010 0.012 

background 0.01 0.001 0.001 0.001 0.001 

radius 150.0 150.0 150.0 165.0 165.0 

thickness 40.0 40.0 40.0 40.0 40.0 

sld_core 6.0 4.0 4.0 4.0 4.0 

sld_shell 1.0 4.0 4.0 4.0 4.0 

sld_solvent 6.0 6.0 6.0 6.0 6.0 

 

The first of those sets (M1) is a “neutron-like” data set, while M2-M5 are considered “x-ray” 

models. M1 differs from M2-M5 in the number of points (100 vs 1000), the Q-resolution (Q/Q 

 7% vs 0.7% for Q > 0.1 Å1), and the error bars (mean relative error of 15 % vs 1.2 %). However, 

the “x-ray” models are completely insensible to the thickness of the core-shell particles, as the 

scattering length densities of the core and the shell are equal. We see that M1+M2 corresponds 

to the ideal case, where both sets of data have been generated with exactly the same sample 

parameters (volume fraction (scale), core radius, and shell thickness). But M3, M4 and M5 have 

been created using a different set of parameters (either for the scale or the radius or both), 

implying that no model will work well when trying to fit simultaneously M1 (or M2) together with 

any of them. 

 

Individual fits 

We will start by fitting each data set individually. You can consult the tutorial “Basic 1D Fitting in 

SasView” if you need additional instructions. We will assume that the scattering lengths of the 

particles (core and shell) and the solvent are well known, and that we are interesting in 

determining the volume fraction (scale parameter) and the dimension of the particles (radius and 

thickness). The initial FitPage for the neutron data set (M1) would look like something like this: 



 

 

And after fitting the data (using the default options, i.e. Levenberg-Marquardt algorithm with 

200 steps and a tolerance of 1.5108), we get a reasonably good fit, with a reduced 2 of 3.6 and 

final parameters close to the expected results:  = 0.0097 ± 0.0002, radius = 148.7 ± 0.3 Å and 

thickness = 40.9 ± 0.5 Å: 

 

 

The fits obtained for the “x-ray” data sets (M2-M5) are even better, with reduced 2  1.8-1.9. 

As expected, we are not able to get the real radius and thickness, but we obtain the correct value 

for the sum of the radius and thickness. 



 

 

 

The set of parameters obtained when fitting each of the 5 data sets individually are summarized 

in the following table1: 

Parameter M1 M2 M3 M4 M5 

scale 0.0097 ± 0.0002 0.0100  ± 2107 0.0120 ± 2107 0.0100  ± 2107 0.0120 ± 2107 

background 0.0066 ± 0.0007 0.0010 ± 2106  0.0010 ± 2106 0.0010 ± 2106  0.0010 ± 3106  

radius 148.7 ± 0.3 184.81 ± 0.04 176.90 ± 0.09 154.4 ± 0.6 200.78 ± 0.03 

thickness 40.9 ± 0.5 5.16 ± 0.04 13.07 ± 0.9 50.6 ± 0.6 4.19 ± 0.03 

R + thickness 189.5 ± 0.6 189.97 ± 0.06 189.97 ± 0.12 205.0 ± 0.9 204.97 ± 0.05 

2 3.6 1.8 1.8 1.9 1.9 

 

 

Simultaneous fit  

Now let’s see what happens when we fit two data sets simultaneously, using the Constrained or 

Simultaneous Fit option in the Fitting menu. Again, if needed detailed instructions  are given in 

the tutorial “Simultaneous 1D Fitting in SasView”.  

                                                           
1 We used the default Levenberg-Marquardt algorithm, which implies that the algorithm will find the local 
minimum closest to the initial guess. Therefore, you could get different results depending on the initial value of the 
parameters. However, in most cases you should get a set of results very close to those given in the table. 



We will start fitting simultaneously the sets M1 and M2, assuming that the sample is the same 

and therefore constraining the volume fraction, the radius and the thickness to be the same for 

both data sets. We define the three needed constraints in the corresponding tab: 

 

And we run the simultaneous fit by pressing the Fit button in this tab. Information about the 

specific weight attributed to each data set (by default all the sets have a weight of one) is given 

in the log explorer window:  

 

  



We see that in this ideal case we obtain good fits for both data sets:  

 

 

For M2, the reduced 2 is the same as the one obtained when fitting the set individually, while 

for M1 is also comparable to that reference value (= 4.4 vs 3.6 before). And more importantly, 

even if M1 has a much smaller influence in the global fit because the lesser number of point and 

larger error bars, the additional information provided by this data set is enough to drive the 

simultaneous fit to the correct answer for the radius and the thickness of our core-shell particles. 

 

 

 



Simultaneous fit of non-compatible data sets  

A different situation arises when the data sets that we fit simultaneously are not “compatible”, 

meaning that the optimal solutions for each of them are different. This is the case, for example, 

if we try to fit simultaneously M1 + M2 or M2 + M3, as M3 has been generated using a different 

volume fraction. In this case it is obvious that we cannot get a unique set of parameters that is 

adequate for both sets. Such situation could arrive if we have used two different samples and we 

have not been careful enough to ensure that they were exactly the same. Unfortunately, other 

systematic errors will have similar consequences and they are much harder to correct for or even 

to determine. What solution will we obtain in these cases? 

The following table shows the results obtained by fitting simultaneously M1 and each of the “x-

ray” sets (M2-M5): 

Parameter M1+M2 M1 + M3 M1 + M4 M1 + M5 

scale 0.0100 ± 1107 0.0120 ± 2107 0.0100 ± 1107 0.0120  ± 2107 

background 0.0065 / 0.0010 0.0055 /  0.0010 0.0068 / 0.0010 0.0062 / 0.0010   

radius 149.99 ± 0.01 154.24 ± 0.01 166.67 ± 0.01 170.67 ± 0.01 

thickness 39.98 ± 0.01 35.74 ± 0.01 38.30 ± 0.01 34.29 ± 0.01 

R + thickness 189.97 ± 0.02 189.98 ± 0.02 204.97 ± 0.02 204.96 ± 0.02 

2 4.4 / 1.8 12.3 / 1.8 244 / 1.9 294 / 1.9 

 

As expected, as soon as it is not possible to get an unique optimal solution for both sets, the 

“heavier” sets dominates the fit and the information contained in M1 is almost fully neglected. 

We can see how the reduced 2 increases considerably for M1, while for M3-M5 it remains close 

to the value obtained in the individual fits, and how the scale and/or radius+thickness values 

obtained are the optimal ones for the “x-ray” set and deviate considerably from M1. However, it 

is still interesting to notice that the information contained in M1 serves at least to drive the 

solution to a reasonable value for the shell thickness. 

As a reference, it is also interesting to see what happens when we fit two incompatible data sets 

that have a similar statistical weight: 

Parameter M2 + M3 M2 + M4 M2 + M5 

scale 0.0108 ± 1107 0.0098 ± 9108 0.0105  ± 1107 

background 0.0008 / 0.0011 0.0004 / 0.0001 0.0004 / 0.00005   

radius 152.2 ± 0.3 138.7 ± 0.4 158.6 ± 0.2 

thickness 37.8 ± 0.3 58.7 ± 0.4 37.6 ± 0.2 

R + thickness 190.0 ± 0.4 197.3 ± 0.5 196.3 ± 0.3 

2 2105 / 3105 3105 / 4105 7105 / 2106 

 

We see that in this case none of the fits is good, as we obtain parameter values in between the 

two possible answers, so none of the two data sets is correctly reproduced. 

 



As said at the beginning, the first thing to do in these cases is to try to understand the origin of 

such discrepancies and, if possible, correct for them. Another possibility consists in fitting 

individually each data set, either i) iterating over each data set and using the results for one set 

as the initial guess for the following one, and/or ii) introducing soft-constraints or reasonable 

parameter limits between the models. For example, in our M1+M3 example we could impose 

that the thickness parameter should be 40 ± 5 Å, based on our result for M1, and then refine the 

scale factor using M3 or M1, depending on our confidence in each data set. 

 

Simultaneous fit using modified weights 

However, the procedure above can be quite time consuming and the “Modify weighting” option 

is a quick way to explore what happens if the weight of the dominant sets is artificially decreased. 

After checking the corresponding button, the tab interface will change to show an additional 

column named Weighting: 

 

The default value for all the data sets is 1, meaning that the weight of all data sets will be scaled 

down using the “lightest” set as a reference, in order to try to get a good balance where each 

data set has a similar importance in determining the final solution. 



How is this done? Note that there is not a clear way of determining exactly the role of each data 

set in the total fit, so this is done in an empirical way and probably you will need to adjust the 

weights manually to get the desired balance. 

First, a single weight per data set is computed as: 

𝑊𝐷 = ∑
1

𝑅𝐸𝑖
2

𝑁𝑝

𝑖=1

 ,  

where 𝑁𝑝 is the number of points in dataset 𝐷 and 𝑅𝐸𝑖 is the relative error of point 𝑖, defined as 

𝑅𝐸𝑖 =
𝜎𝑖

𝐼𝑖
. We see that data sets with more points or smaller relative errors will have larger 

weights, so the appropriate weight for each data set is calculated using the minimum of those 

weights, i.e.: 

𝑊𝐷
′ = 𝑈𝐷

√
min(𝑊𝐷)

𝑊𝐷
 

where 𝑈𝐷 is the weighting given by the user in the interface. 

The weights 𝑊𝐷
′  are then used by Bumps to compute the residuals as: 

𝑅 = ∑ 𝑊𝐷
′ [∑ (

𝐼𝑖 − 𝑀𝑖

𝜎𝑖
)

𝐷

𝑖

]

𝐷

 

where 𝑀𝑖  is the modelled intensity for each data point and the minimized quantity is 𝑅2.   

So if we repeat now the fit for the sets M1 + M3, we see that the weight of the M3 set is reduced 

by a factor of about 100, i.e. roughly a factor of 10 due to the difference in the number of points 

in M1 and M3, and another factor of 10 due to the difference in their relative errors.  

 

And if we compare the fits and reduced 2 with those obtained before, we observe that M1 has 

gained some influence in the fit (2 = 12.3 7.3) at the expense of M3 (2 = 1.8 1867): 

 

 



 

 

If needed, it is then possible to adjust the user weights to reduce or increase further the influence 

of a given set. For example, reducing further the weight of M3 we get results that approach more 

and more to those of M1 fitted alone:  

Parameter M1+M3 M1+M3 M1+M3 M1+M3 M1+M3 

User weights None 1 / 1 1 / 0.1  1/0.03 1 / 0.01  

Applied weights 1 / 1 1 / 0.0097 1 / 0.00097 1 / 0.00029 1 / 9.7105 

scale 0.0120 ± 2107 0.0122 ± 1105 0.0122 ± 8105 0.0107 ± 0.0002 0.0098 ± 0.0002 

background 0.0055 / 0.0010 0.0052 / 0.0012 0.0050 / 0.0008 0.0059 / 0.0011 0.0065 / 0.0013 

radius 154.24 ± 0.01 153.15 ± 0.06 151.7 ± 0.1 150.1 ± 0.2 148.9 ± 0.3 

thickness 35.74 ± 0.01 35.49 ± 0.02 35.7 ± 0.1 38.4 ± 0.4 40.5 ± 0.5 

R + thickness 189.98 ± 0.02 188.64 ± 0.06 187.4 ± 0.2 188.5 ± 0.4 189.4 ± 0.5 

2 12.3 / 1.8 7.3 / 1867 5.0 / 21994 3.9 / 5105 3.7 / 1106 



Using the sets M1 and M4 with different user weights, we get: 

Parameter M1+M4 M1+M4 M1+M4 M1+M4 M1 + M4 

User weights None 1 / 1 1 / 3  1 / 5  1 / 0.1 

Applied weights 1 / 1 1 / 0.0099 1 / 0.03 1 / 0.049 1 / 0.00099 

scale 0.0100 ± 1107 0.0109 ± 1105 0.0102 ± 5106 0.0101 ± 3106 0.0118 ± 8105 

background 0.0068 / 0.0010 0.0060 / 0.0002 0.0067 / 0.0009 0.0069 / 0.0010 0.0053 /  0.003 

radius 166.67 ± 0.01 160.92 ± 0.06 165.51 ± 0.03 166.22 ± 0.02 151.8 ± 0.1 

thickness 38.30 ± 0.01 37.16 ± 0.02 38.06 ± 0.02 38.21 ± 0.01 36.3 ± 0.1 

R + thickness 204.97 ± 0.02 198.08 ± 0.06 203.57 ± 0.03 204.43 ± 0.03 188.0 ± 0.2 

2 244 / 1.9 106 / 51107 218 / 1754 238 / 255 4.9 / 6105 

 

And with M1 and M5: 

Parameter M1+M5 M1+M5 M1+M5 M1+M5 

User weights None 1 / 1 1 / 0.5  1 / 2  

Applied weights 1 / 1 1 / 0.0099 1 / 0.0049 1 / 0.020 

scale 0.0120 ± 2107 0.0131 ± 1105 0.0139 ± 2105 0.0124 ± 8106 

background 0.0062 / 0.0010 0.0044 /4105 0.0040 /0.0019 0.0055 / 0.0008 

radius 170.67 ± 0.01 164.39 ± 0.06 159.91 ± 0.07 168.12 ± 0.04 

thickness 34.29 ± 0.01 33.21 ± 0.02 32.56 ± 0.02 33.84 ± 0.02 

R + thickness 204.96 ± 0.02 197.60 ± 0.06 192.47 ± 0.08 201.96 ± 0.04 

2 304 / 1.9 133 / 59774 52 / 2.2105 228 / 8440 

 

This concludes our example showing how the user weights can be employed to give more or less 

relative weight to one set over another, and therefore direct the fit in a desired direction. The 

variability of the results obtained shown in the tables above tells us that one should be very 

careful when modifying the weights, so our two final advices are: 

1. If possible, avoid using this option. 

2. If needed, use it to try to get a set of parameters that are reasonably consistent with all 

the available information (all the data sets) and then try to understand why the weight of 

some of the sets needs to be modified. Are the error uncertainties well estimated? Is the 

instrumental resolution well known? Are the samples on all data sets really equivalent? 

  



Discarding the error bars 

It is possible to modify also the way the uncertainties are employed using the Weighting box in 

the Fit Options tab for each page. For example, setting Weighting to None makes that statistical 

uncertainties are completely discarded and each data point has the same weight in the fitting, 

independently of its error bar. This weighting scheme can be combined with the Modify 

weighting one available in the Constrained or Simultaneous Fit tab. For example, in this particular 

example (Weighting = None), checking also the Modify weighting option will have the effect of 

“correcting” for the different number of data points in each data set. 

Fitting again M1 + M3, but setting Weighting to None in both FitPages we obtain the following 

results when fitting both sets individually: 

Parameter M1 M3 

scale 0.02 ± 0.02 0.0120 ± 3105 

background 0.04 ± 0.17 0.0008 ± 0.04 

radius 156 ± 10 171 ± 12 

thickness 28 ± 18 19 ± 12 

R + thickness 184 ± 21 190 ± 16 

2 0.13 8105 

 

We see that the individual fits are much less reliable if the information about the data 

uncertainties is neglected, resulting in very large uncertainties for the parameters obtained. In 

this case, we cannot expect a value of the reduced  2 close to 1 for a good fit, so the numerical 

values returned by the fit are not particularly helpful to tell us if the fit was successful or not. 

 

And fitting them simultaneously: 

Parameter M1+M3 M1+M3 

User weights None 1 / 1 

Applied weights 1 / 1 1 / 0.316 

scale 0.0121 ± 3105 0.0123 ± 7105 

background 0.192 / 0.03 0.055 / 0.102 

radius 154.0 ± 0.1 153.0 ± 0.3 

thickness 35.57 ± 0.04 35.35 ± 0.09 

R + thickness 189.6 ± 0.2 188.4 ± 0.3 

2 0.38 / 0.004 0.17 / 0.08 

 

In this case, the results obtained with and without the Modify weighting option are very similar 

and we also see that the weight applied to the set M3 is √𝑁𝑀1 𝑁𝑀3⁄ , as expected if only the 

number of points is used to calculate the data set weight. 

 



An example with real data 

Finally we can test this option on real data using the three sets already employed in the tutorial 

“Simultaneous 1D Fitting in SasView”2: 

 M1 = core contrast AOT me_SANS 

 M2 = drop contrast AOT me_SANS 

 M3 = shell contrast AOT me_SANS 

As before, we start by fitting each data set individually to have a reference of the optimal ()set of 

parameters for each of them: 

Parameter M1 M2 M3 

scale 0.029 ± 0.003 0.0506 ± 0.0002 0.0164 ± 0.0003 

background 0.03 ± 0.01 0.114 ± 0.003  0.177 ± 0.004 

radius 26.7 ± 0.2 29.8 ± 0.2 15.9 ± 3 

thickness 0.5 ± 1.1 1.5 ± 0.2 21.4 ± 0.4 

2 4.3 35.6 10.5 

 

It should be noted that those are the parameters that minimize 2 for each data set, but not 

necessarily the true parameters, as different contrasts will be or less sensitive to the radius and 

shell thickness of the particles. Fitting the 3 sets simultaneously we get:  

Parameter M1+M2+M3 M1+M2+M3 M1+M2+M3 

User weights None 1/1/1 0.1/1/0.3 

App weights 1/1/1 1/0.31/0.61 0.1/0.31/0.18 

scale 0.05/0.05/0.08 0.06/0.06/0.06 0.04/0.05/0.10 

background 0.10/0.14/0.08 0.06/0.16/0.08 0.16/0.13/0.08 

radius 25.28 ± 0.08 24.3 ± 0.1 26.3 ± 0.6 

thickness 6.71 ± 0.10 8.0 ± 0.2 5.6 ± 0.6 

2 6.4/35.7/16.3 5.4/37.0/17.3 8.5/35.6/15.3 

 

 

                                                           
2 Consult the tutorial for a full description of the scientific problem and details on how to set and perform the 
simultaneous fit. Note also that the results presented here have been obtained using a fixed Gaussian 
polydispersity of 0.1 for both the radius and shell thickness, and the default Levenberg-Marquard algorithm, while 
previously the polydispersity was also adjusted and the more robust DREAM algorithm was used to fit the data, 
which explains why the results are different. 


