##############################################################################
# This software was developed by the University of Tennessee as part of the
# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
# project funded by the US National Science Foundation.
#
# If you use DANSE applications to do scientific research that leads to
# publication, we ask that you acknowledge the use of the software with the
# following sentence:
#
# This work benefited from DANSE software developed under NSF award DMR-0520547
#
# Copyright 2008-2011, University of Tennessee
##############################################################################
"""
Provide functionality for a C extension model
.. WARNING::
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
DO NOT MODIFY THIS FILE, MODIFY
src/sas/models/include/csparallelepiped.h
AND RE-RUN THE GENERATOR SCRIPT
"""
from sas.models.BaseComponent import BaseComponent
from sas.models.sas_extension.c_models import CCSParallelepipedModel
from numpy import inf
[docs]def create_CSParallelepipedModel():
"""
Create a model instance
"""
obj = CSParallelepipedModel()
# CCSParallelepipedModel.__init__(obj) is called by
# the CSParallelepipedModel constructor
return obj
[docs]class CSParallelepipedModel(CCSParallelepipedModel, BaseComponent):
"""
Class that evaluates a CSParallelepipedModel model.
This file was auto-generated from src/sas/models/include/csparallelepiped.h.
Refer to that file and the structure it contains
for details of the model.
List of default parameters:
* scale = 1.0
* shortA = 35.0 [A]
* midB = 75.0 [A]
* longC = 400.0 [A]
* rimA = 10.0 [A]
* rimB = 10.0 [A]
* rimC = 10.0 [A]
* sld_rimA = 2e-06 [1/A^(2)]
* sld_rimB = 4e-06 [1/A^(2)]
* sld_rimC = 2e-06 [1/A^(2)]
* sld_pcore = 1e-06 [1/A^(2)]
* sld_solv = 6e-06 [1/A^(2)]
* background = 0.06 [1/cm]
* parallel_theta = 0.0 [deg]
* parallel_phi = 0.0 [deg]
* parallel_psi = 0.0 [deg]
"""
def __init__(self, multfactor=1):
""" Initialization """
self.__dict__ = {}
# Initialize BaseComponent first, then sphere
BaseComponent.__init__(self)
#apply(CCSParallelepipedModel.__init__, (self,))
CCSParallelepipedModel.__init__(self)
self.is_multifunc = False
## Name of the model
self.name = "CSParallelepipedModel"
## Model description
self.description = """
Form factor for a rectangular Shell. Below are the Parameters.
scale: scale factor
shortA: length of short edge [A]
midB: length of another short edge [A]
longC: length of long edge of the parallelepiped [A]
rimA: length of short edge [A]
rimB: length of another short edge [A]
rimC: length of long edge of the parallelepiped [A]
sld_rimA: sld of rimA [1/A^(2)]
sld_rimB: sld of rimB [1/A^(2)]
sld_rimC: sld of rimC [1/A^(2)]
sld_core: Pipe_sld [1/A^(2)]
sld_solv: solvent_sld [1/A^(2)]
background: incoherent Background [1/cm]
"""
## Parameter details [units, min, max]
self.details = {}
self.details['scale'] = ['', None, None]
self.details['shortA'] = ['[A]', None, None]
self.details['midB'] = ['[A]', None, None]
self.details['longC'] = ['[A]', None, None]
self.details['rimA'] = ['[A]', None, None]
self.details['rimB'] = ['[A]', None, None]
self.details['rimC'] = ['[A]', None, None]
self.details['sld_rimA'] = ['[1/A^(2)]', None, None]
self.details['sld_rimB'] = ['[1/A^(2)]', None, None]
self.details['sld_rimC'] = ['[1/A^(2)]', None, None]
self.details['sld_pcore'] = ['[1/A^(2)]', None, None]
self.details['sld_solv'] = ['[1/A^(2)]', None, None]
self.details['background'] = ['[1/cm]', None, None]
self.details['parallel_theta'] = ['[deg]', None, None]
self.details['parallel_phi'] = ['[deg]', None, None]
self.details['parallel_psi'] = ['[deg]', None, None]
## fittable parameters
self.fixed = ['shortA.width',
'midB.width',
'longC.width',
'parallel_phi.width',
'parallel_psi.width',
'parallel_theta.width']
## non-fittable parameters
self.non_fittable = []
## parameters with orientation
self.orientation_params = ['parallel_phi',
'parallel_psi',
'parallel_theta',
'parallel_phi.width',
'parallel_psi.width',
'parallel_theta.width']
## parameters with magnetism
self.magnetic_params = []
self.category = None
self.multiplicity_info = None
def __setstate__(self, state):
"""
restore the state of a model from pickle
"""
self.__dict__, self.params, self.dispersion = state
def __reduce_ex__(self, proto):
"""
Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of
c model.
"""
state = (self.__dict__, self.params, self.dispersion)
return (create_CSParallelepipedModel, tuple(), state, None, None)
[docs] def clone(self):
""" Return a identical copy of self """
return self._clone(CSParallelepipedModel())
[docs] def run(self, x=0.0):
"""
Evaluate the model
:param x: input q, or [q,phi]
:return: scattering function P(q)
"""
return CCSParallelepipedModel.run(self, x)
[docs] def runXY(self, x=0.0):
"""
Evaluate the model in cartesian coordinates
:param x: input q, or [qx, qy]
:return: scattering function P(q)
"""
return CCSParallelepipedModel.runXY(self, x)
[docs] def evalDistribution(self, x):
"""
Evaluate the model in cartesian coordinates
:param x: input q[], or [qx[], qy[]]
:return: scattering function P(q[])
"""
return CCSParallelepipedModel.evalDistribution(self, x)
[docs] def calculate_ER(self):
"""
Calculate the effective radius for P(q)*S(q)
:return: the value of the effective radius
"""
return CCSParallelepipedModel.calculate_ER(self)
[docs] def calculate_VR(self):
"""
Calculate the volf ratio for P(q)*S(q)
:return: the value of the volf ratio
"""
return CCSParallelepipedModel.calculate_VR(self)
[docs] def set_dispersion(self, parameter, dispersion):
"""
Set the dispersion object for a model parameter
:param parameter: name of the parameter [string]
:param dispersion: dispersion object of type DispersionModel
"""
return CCSParallelepipedModel.set_dispersion(self,
parameter, dispersion.cdisp)
# End of file