sas.models package
Subpackages
Submodules
sas.models.AddComponent module
Provide base functionality for all model components
author: | Mathieu Doucet / UTK |
---|---|
contact: | mathieu.doucet@nist.gov |
-
class
sas.models.AddComponent.
AddComponent
(base=None, other=None)[source] Bases:
sas.models.BaseComponent.BaseComponent
Basic model component for Addition Provides basic arithmetics
-
getParam
(name)[source] Set the value of a model parameter
Parameters: name – name of the parameter Returns: value of the parameter
-
getParamList
()[source] Return a list of all available parameters for the model
-
run
(x=0)[source] Evaluate each part of the component and sum the results
Parameters: x – input parameter Returns: value of the model at x
-
runXY
(x=0)[source] Evaluate each part of the component and sum the results
Parameters: x – input parameter Returns: value of the model at x
-
setParam
(name, value)[source] Set the value of a model parameter
Parameters: - name – name of parameter to set
- value – value to give the paramter
-
sas.models.BCCrystalModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/bcc.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.BCCrystalModel.
BCCrystalModel
(multfactor=1)[source] Bases:
CBCCrystalModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a BCCrystalModel model. This file was auto-generated from src/sas/models/include/bcc.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- dnn = 220.0 [A]
- d_factor = 0.06
- radius = 40.0 [A]
- sldSph = 3e-06 [1/A^(2)]
- sldSolv = 6.3e-06 [1/A^(2)]
- background = 0.0 [1/cm]
- theta = 0.0 [deg]
- phi = 0.0 [deg]
- psi = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.BCCrystalModel.
create_BCCrystalModel
()[source] Create a model instance
sas.models.BEPolyelectrolyte module
BEPolyelectrolyte as a BaseComponent model
-
class
sas.models.BEPolyelectrolyte.
BEPolyelectrolyte
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a BEPolyelectrolyte.
F(x) = K/(4 pi Lb (alpha)^(2)) (q^(2)+k2)/(1+(r02)^(2)) (q^(2)+k2) (q^(2)-(12 h C/b^(2)))
The model has Eight parameters:
K = Constrast factor of the polymer Lb = Bjerrum length H = virial parameter B = monomer length Cs = Concentration of monovalent salt alpha = ionazation degree C = polymer molar concentration bkd = background
-
run
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [r, theta]) @return: (debye value)
-
runXY
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [qx, qy]) @return: debye value
-
sas.models.BarBellModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/barbell.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.BarBellModel.
BarBellModel
(multfactor=1)[source] Bases:
CBarBellModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a BarBellModel model. This file was auto-generated from src/sas/models/include/barbell.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- rad_bar = 20.0 [A]
- len_bar = 400.0 [A]
- rad_bell = 40.0 [A]
- sld_barbell = 1e-06 [1/A^(2)]
- sld_solv = 6.3e-06 [1/A^(2)]
- background = 0.0 [1/cm]
- theta = 0.0 [deg]
- phi = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.BarBellModel.
create_BarBellModel
()[source] Create a model instance
sas.models.BaseComponent module
Provide base functionality for all model components
-
class
sas.models.BaseComponent.
BaseComponent
[source] Basic model component
Since version 0.5.0, basic operations are no longer supported.
-
calculate_ER
()[source] Calculate effective radius
-
calculate_VR
()[source] Calculate volume fraction ratio
-
clone
()[source] Returns a new object identical to the current object
-
evalDistribution
(qdist)[source] Evaluate a distribution of q-values.
For 1D, a numpy array is expected as input:
evalDistribution(q)
where q is a numpy array.
For 2D, a list of numpy arrays are expected: [qx_prime,qy_prime], where 1D arrays,
qx_prime = [ qx[0], qx[1], qx[2], ....]
and
qy_prime = [ qy[0], qy[1], qy[2], ....]
Then get
q = numpy.sqrt(qx_prime^2+qy_prime^2)
that is a qr in 1D array;
q = [q[0], q[1], q[2], ....]
- ..note::
- Due to 2D speed issue, no anisotropic scattering is supported for python models, thus C-models should have their own evalDistribution methods.
The method is then called the following way:
evalDistribution(q)
where q is a numpy array.
Parameters: qdist – ndarray of scalar q-values or list [qx,qy] where qx,qy are 1D ndarrays
-
getDispParamList
()[source] Return a list of all available parameters for the model
-
getParam
(name)[source] Set the value of a model parameter
Parameters: name – name of the parameter
-
getParamList
()[source] Return a list of all available parameters for the model
-
getParamListWithToken
(token, member)[source] get Param List With Token
-
getParamWithToken
(name, token, member)[source] get Param With Token
-
getProfile
()[source] Get SLD profile
- : return: (z, beta) where z is a list of depth of the transition points
- beta is a list of the corresponding SLD values
-
is_fittable
(par_name)[source] Check if a given parameter is fittable or not
Parameters: par_name – the parameter name to check
-
run
(x)[source] run 1d
-
runXY
(x)[source] run 2d
-
setParam
(name, value)[source] Set the value of a model parameter
Parameters: - name – name of the parameter
- value – value of the parameter
-
setParamWithToken
(name, value, token, member)[source] set Param With Token
-
set_dispersion
(parameter, dispersion)[source] model dispersions
-
sas.models.BaseModel module
Provide base functionality for all model components
The following has changed since going from BaseComponent to BaseModel:
- Arithmetic operation between models is no longer supported. It was found to be of little use and not very flexible.
- Parameters are now stored as Parameter object to provide the necessary extra information like limits, units, etc...
-
class
sas.models.BaseModel.
BaseModel
[source] Bases:
sas.models.ModelAdaptor.ModelAdaptor
Basic model component
-
calculate_ER
()[source]
-
clone
()[source] Returns a new object identical to the current object
-
getParam
(name)[source] Set the value of a model parameter
Parameters: - name – name of the parameter
- value – value of the parameter
-
getParamList
()[source] Return a list of all available parameters for the model
-
name
= 'BaseModel'
-
run
(x=0)[source]
-
runXY
(x=0)[source]
-
setParam
(name, value)[source] Set the value of a model parameter
Parameters: - name – name of the parameter
- value – value of the parameter
-
-
class
sas.models.BaseModel.
Parameter
(name, value)[source] Bases:
object
Parameter class
-
name
= ''
-
value
= 0.0
-
-
class
sas.models.BaseModel.
ParameterProperty
(name, **kw)[source] Bases:
object
Parameter property allow direct access to the parameter values
sas.models.BinaryHSModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/binaryHS.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.BinaryHSModel.
BinaryHSModel
(multfactor=1)[source] Bases:
CBinaryHSModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a BinaryHSModel model. This file was auto-generated from src/sas/models/include/binaryHS.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- l_radius = 100.0 [A]
- s_radius = 25.0 [A]
- vol_frac_ls = 0.1
- vol_frac_ss = 0.2
- ls_sld = 3.5e-06 [1/A^(2)]
- ss_sld = 5e-07 [1/A^(2)]
- solvent_sld = 6.36e-06 [1/A^(2)]
- background = 0.001 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.BinaryHSModel.
create_BinaryHSModel
()[source] Create a model instance
sas.models.BroadPeakModel module
BroadPeakModel function as a BaseComponent model
-
class
sas.models.BroadPeakModel.
BroadPeakModel
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a BroadPeakModel. I(q) = I(q) = scale_p/pow(qval,exponent)+scale_l/ (1.0 + pow((qval*length_l),exponent_l) )+ background
-
run
(x=0.0)[source] Evaluate the model
param x: input q-value (float or [float, float] as [r, theta]) return: (scattering value)
-
runXY
(x=0.0)[source] Evaluate the model
param x: input q-value (float or [float, float] as [qx, qy]) return: scattering value
-
sas.models.CSParallelepipedModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/csparallelepiped.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.CSParallelepipedModel.
CSParallelepipedModel
(multfactor=1)[source] Bases:
CCSParallelepipedModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a CSParallelepipedModel model. This file was auto-generated from src/sas/models/include/csparallelepiped.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- shortA = 35.0 [A]
- midB = 75.0 [A]
- longC = 400.0 [A]
- rimA = 10.0 [A]
- rimB = 10.0 [A]
- rimC = 10.0 [A]
- sld_rimA = 2e-06 [1/A^(2)]
- sld_rimB = 4e-06 [1/A^(2)]
- sld_rimC = 2e-06 [1/A^(2)]
- sld_pcore = 1e-06 [1/A^(2)]
- sld_solv = 6e-06 [1/A^(2)]
- background = 0.06 [1/cm]
- parallel_theta = 0.0 [deg]
- parallel_phi = 0.0 [deg]
- parallel_psi = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.CSParallelepipedModel.
create_CSParallelepipedModel
()[source] Create a model instance
sas.models.CappedCylinderModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/capcyl.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.CappedCylinderModel.
CappedCylinderModel
(multfactor=1)[source] Bases:
CCappedCylinderModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a CappedCylinderModel model. This file was auto-generated from src/sas/models/include/capcyl.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- rad_cyl = 20.0 [A]
- len_cyl = 400.0 [A]
- rad_cap = 40.0 [A]
- sld_capcyl = 1e-06 [1/A^(2)]
- sld_solv = 6.3e-06 [1/A^(2)]
- background = 0.0 [1/cm]
- theta = 0.0 [deg]
- phi = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.CappedCylinderModel.
create_CappedCylinderModel
()[source] Create a model instance
sas.models.Constant module
Provide constant function as a BaseComponent model
-
class
sas.models.Constant.
Constant
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a constant model. List of default parameters:
- value = 1.0
-
clone
()[source] Return a identical copy of self
-
run
(x=0.0)[source] Evaluate the model @param x: unused @return: (constant value)
-
runXY
(x=0.0)[source] Evaluate the model @param x: unused @return: constant value
sas.models.Core2ndMomentModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/coresecondmoment.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.Core2ndMomentModel.
Core2ndMomentModel
(multfactor=1)[source] Bases:
CCore2ndMomentModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a Core2ndMomentModel model. This file was auto-generated from src/sas/models/include/coresecondmoment.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- density_poly = 0.7 [g/cm^(3)]
- sld_poly = 1.5e-06 [1/A^(2)]
- radius_core = 500.0 [A]
- volf_cores = 0.14
- ads_amount = 1.9 [mg/m^(2)]
- sld_solv = 6.3e-06 [1/A^(2)]
- second_moment = 23.0 [A]
- background = 0.0 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.Core2ndMomentModel.
create_Core2ndMomentModel
()[source] Create a model instance
sas.models.CoreFourShellModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/corefourshell.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.CoreFourShellModel.
CoreFourShellModel
(multfactor=1)[source] Bases:
CCoreFourShellModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a CoreFourShellModel model. This file was auto-generated from src/sas/models/include/corefourshell.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- rad_core0 = 60.0 [A]
- sld_core0 = 6.4e-06 [1/A^(2)]
- thick_shell1 = 10.0 [A]
- sld_shell1 = 1e-06 [1/A^(2)]
- thick_shell2 = 10.0 [A]
- sld_shell2 = 2e-06 [1/A^(2)]
- thick_shell3 = 10.0 [A]
- sld_shell3 = 3e-06 [1/A^(2)]
- thick_shell4 = 10.0 [A]
- sld_shell4 = 4e-06 [1/A^(2)]
- sld_solv = 6.4e-06 [1/A^(2)]
- background = 0.001 [1/cm]
- M0_sld_shell1 = 0.0 [1/A^(2)]
- M_theta_shell1 = 0.0 [deg]
- M_phi_shell1 = 0.0 [deg]
- M0_sld_shell2 = 0.0 [1/A^(2)]
- M_theta_shell2 = 0.0 [deg]
- M_phi_shell2 = 0.0 [deg]
- M0_sld_shell3 = 0.0 [1/A^(2)]
- M_theta_shell3 = 0.0 [deg]
- M_phi_shell3 = 0.0 [deg]
- M0_sld_shell4 = 0.0 [1/A^(2)]
- M_theta_shell4 = 0.0 [deg]
- M_phi_shell4 = 0.0 [deg]
- M0_sld_core0 = 0.0 [1/A^(2)]
- M_theta_core0 = 0.0 [deg]
- M_phi_core0 = 0.0 [deg]
- M0_sld_solv = 0.0 [1/A^(2)]
- M_theta_solv = 0.0 [deg]
- M_phi_solv = 0.0 [deg]
- Up_frac_i = 0.5 [u/(u+d)]
- Up_frac_f = 0.5 [u/(u+d)]
- Up_theta = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.CoreFourShellModel.
create_CoreFourShellModel
()[source] Create a model instance
sas.models.CoreMultiShellModel module
Core-Multi-Shell model
-
class
sas.models.CoreMultiShellModel.
CoreMultiShellModel
(multfactor=1)[source] Bases:
sas.models.BaseComponent.BaseComponent
This multi-model is based on CoreFourShellModel and provides the capability of changing the number of shells between 1 and 4.
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
evalDistribution
(x=[])[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
getProfile
()[source] Get SLD profile Note: This works only for func_shell num = 2.
Returns: (r, beta) where r is a list of radius of the transition points and beta is a list of the corresponding SLD values.
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q-value (float or [float, float] as [r, theta]) Returns: (DAB value)
-
runXY
(x=0.0)[source] Evaluate the model
Parameters: x – input q-value (float or [float, float] as [qx, qy]) Returns: DAB value
-
setParam
(name, value)[source] Set the value of a model parameter
Parameters: - name – name of the parameter
- value – value of the parameter
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.CoreShellBicelleModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/core_shell_bicelle.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.CoreShellBicelleModel.
CoreShellBicelleModel
(multfactor=1)[source] Bases:
CCoreShellBicelleModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a CoreShellBicelleModel model. This file was auto-generated from src/sas/models/include/core_shell_bicelle.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- radius = 20.0 [A]
- scale = 1.0
- rim_thick = 10.0 [A]
- face_thick = 10.0 [A]
- length = 400.0 [A]
- core_sld = 1e-06 [1/A^(2)]
- face_sld = 4e-06 [1/A^(2)]
- rim_sld = 4e-06 [1/A^(2)]
- solvent_sld = 1e-06 [1/A^(2)]
- background = 0.0 [1/cm]
- axis_theta = 90.0 [deg]
- axis_phi = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.CoreShellBicelleModel.
create_CoreShellBicelleModel
()[source] Create a model instance
sas.models.CoreShellCylinderModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/core_shell_cylinder.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.CoreShellCylinderModel.
CoreShellCylinderModel
(multfactor=1)[source] Bases:
CCoreShellCylinderModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a CoreShellCylinderModel model. This file was auto-generated from src/sas/models/include/core_shell_cylinder.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- radius = 20.0 [A]
- scale = 1.0
- thickness = 10.0 [A]
- length = 400.0 [A]
- core_sld = 1e-06 [1/A^(2)]
- shell_sld = 4e-06 [1/A^(2)]
- solvent_sld = 1e-06 [1/A^(2)]
- background = 0.0 [1/cm]
- axis_theta = 90.0 [deg]
- axis_phi = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.CoreShellCylinderModel.
create_CoreShellCylinderModel
()[source] Create a model instance
sas.models.CoreShellEllipsoidModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/spheroid.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.CoreShellEllipsoidModel.
CoreShellEllipsoidModel
(multfactor=1)[source] Bases:
CCoreShellEllipsoidModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a CoreShellEllipsoidModel model. This file was auto-generated from src/sas/models/include/spheroid.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- equat_core = 200.0 [A]
- polar_core = 20.0 [A]
- equat_shell = 250.0 [A]
- polar_shell = 30.0 [A]
- sld_core = 2e-06 [1/A^(2)]
- sld_shell = 1e-06 [1/A^(2)]
- sld_solvent = 6.3e-06 [1/A^(2)]
- background = 0.001 [1/cm]
- axis_theta = 0.0 [deg]
- axis_phi = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.CoreShellEllipsoidModel.
create_CoreShellEllipsoidModel
()[source] Create a model instance
sas.models.CoreShellEllipsoidXTModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/spheroidXT.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.CoreShellEllipsoidXTModel.
CoreShellEllipsoidXTModel
(multfactor=1)[source] Bases:
CCoreShellEllipsoidXTModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a CoreShellEllipsoidXTModel model. This file was auto-generated from src/sas/models/include/spheroidXT.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 0.05
- equat_core = 20.0 [A]
- X_core = 3.0
- T_shell = 30.0 [A]
- XpolarShell = 1.0
- sld_core = 2e-06 [1/A^(2)]
- sld_shell = 1e-06 [1/A^(2)]
- sld_solvent = 6.3e-06 [1/A^(2)]
- background = 0.001 [1/cm]
- axis_theta = 0.0 [deg]
- axis_phi = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.CoreShellEllipsoidXTModel.
create_CoreShellEllipsoidXTModel
()[source] Create a model instance
sas.models.CoreShellModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/core_shell.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.CoreShellModel.
CoreShellModel
(multfactor=1)[source] Bases:
CCoreShellModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a CoreShellModel model. This file was auto-generated from src/sas/models/include/core_shell.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- radius = 60.0 [A]
- scale = 1.0
- thickness = 10.0 [A]
- core_sld = 1e-06 [1/A^(2)]
- shell_sld = 2e-06 [1/A^(2)]
- solvent_sld = 3e-06 [1/A^(2)]
- background = 0.0 [1/cm]
- M0_sld_shell = 0.0 [1/A^(2)]
- M_theta_shell = 0.0 [deg]
- M_phi_shell = 0.0 [deg]
- M0_sld_core = 0.0 [1/A^(2)]
- M_theta_core = 0.0 [deg]
- M_phi_core = 0.0 [deg]
- M0_sld_solv = 0.0 [1/A^(2)]
- M_theta_solv = 0.0 [deg]
- M_phi_solv = 0.0 [deg]
- Up_frac_i = 0.5 [u/(u+d)]
- Up_frac_f = 0.5 [u/(u+d)]
- Up_theta = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.CoreShellModel.
create_CoreShellModel
()[source] Create a model instance
sas.models.CorrLengthModel module
CorrLengthModel function as a BaseComponent model
-
class
sas.models.CorrLengthModel.
CorrLengthModel
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a CorrLengthModel. I(q) = I(q) = scale_p/pow(q,exponent)+scale_l/ (1.0 + pow((q*length_l),exponent_l) )+ background
-
run
(x=0.0)[source] Evaluate the model
param x: input q-value (float or [float, float] as [r, theta]) return: (scattering value)
-
runXY
(x=0.0)[source] Evaluate the model
param x: input q-value (float or [float, float] as [qx, qy]) return: scattering value
-
sas.models.Cos module
Provide cos(x) function as a BaseComponent model
-
class
sas.models.Cos.
Cos
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a cos(x) model.
-
clone
()[source] Return a identical copy of self
-
run
(x=0.0)[source] Evaluate the model @param x: input x, or [x, phi] [radian] @return: cos(x) or cos(x*cos(phi))*cos(x*cos(phi))
-
runXY
(x=0.0)[source] Evaluate the model @param x: input x, or [x, y] [radian] @return: cos(x) or cos(x)*cos(y)
-
sas.models.CylinderModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/cylinder.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.CylinderModel.
CylinderModel
(multfactor=1)[source] Bases:
CCylinderModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a CylinderModel model. This file was auto-generated from src/sas/models/include/cylinder.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- radius = 20.0 [A]
- length = 400.0 [A]
- sldCyl = 4e-06 [1/A^(2)]
- sldSolv = 1e-06 [1/A^(2)]
- background = 0.0 [1/cm]
- cyl_theta = 60.0 [deg]
- cyl_phi = 60.0 [deg]
- M0_sld_cyl = 0.0 [1/A^(2)]
- M_theta_cyl = 0.0 [deg]
- M_phi_cyl = 0.0 [deg]
- M0_sld_solv = 0.0 [1/A^(2)]
- M_theta_solv = 0.0 [deg]
- M_phi_solv = 0.0 [deg]
- Up_frac_i = 0.5 [u/(u+d)]
- Up_frac_f = 0.5 [u/(u+d)]
- Up_theta = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.CylinderModel.
create_CylinderModel
()[source] Create a model instance
sas.models.DABModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/dabmodel.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.DABModel.
DABModel
(multfactor=1)[source] Bases:
CDABModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a DABModel model. This file was auto-generated from src/sas/models/include/dabmodel.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- length = 50.0 [A]
- scale = 1.0
- background = 0.0 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.DABModel.
create_DABModel
()[source] Create a model instance
sas.models.DebyeModel module
Provide F(x) = 2( exp(-x) + x - 1 )/x**2 with x = (q*R_g)**2
Debye function as a BaseComponent model
-
class
sas.models.DebyeModel.
DebyeModel
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a Debye model.
F(x) = 2( exp(-x) + x - 1 )/x**2 with x = (q*R_g)**2
- The model has three parameters:
- Rg = radius of gyration scale = scale factor bkd = Constant background
-
run
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [r, theta]) @return: (debye value)
-
runXY
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [qx, qy]) @return: debye value
sas.models.DiamCylFunc module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/DiamCyl.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.DiamCylFunc.
DiamCylFunc
(multfactor=1)[source] Bases:
CDiamCylFunc
,sas.models.BaseComponent.BaseComponent
Class that evaluates a DiamCylFunc model. This file was auto-generated from src/sas/models/include/DiamCyl.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- radius = 20.0 A
- length = 400.0 A
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.DiamCylFunc.
create_DiamCylFunc
()[source] Create a model instance
sas.models.DiamEllipFunc module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/DiamEllip.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.DiamEllipFunc.
DiamEllipFunc
(multfactor=1)[source] Bases:
CDiamEllipFunc
,sas.models.BaseComponent.BaseComponent
Class that evaluates a DiamEllipFunc model. This file was auto-generated from src/sas/models/include/DiamEllip.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- radius_a = 20.0 A
- radius_b = 400.0 A
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.DiamEllipFunc.
create_DiamEllipFunc
()[source] Create a model instance
sas.models.DisperseModel module
Wrapper for the Disperser class extension
-
class
sas.models.DisperseModel.
DisperseModel
(model, paramList, sigmaList)[source] Bases:
Disperser
,sas.models.BaseComponent.BaseComponent
Wrapper class for the Disperser extension Python class that takes a model and averages its output for a distribution of its parameters.
The parameters to be varied are specified at instantiation time. The distributions are Gaussian, with std deviations specified for each parameter at instantiation time.
Example:
cyl = CylinderModel() disp = DisperseModel(cyl, ['cyl_phi'], [0.3]) disp.run([0.01, 1.57])
-
clone
()[source] Return a identical copy of self
-
getParam
(name)[source] Get the value of the given parameter :param name: parameter name
-
run
(x=0.0)[source] Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q)
-
setParam
(name, value)[source] Set a parameter value :param name: parameter name
-
sas.models.DivComponent module
Provide base functionality for all model components @author: Mathieu Doucet / UTK @contact: mathieu.doucet@nist.gov
-
class
sas.models.DivComponent.
DivComponent
(base=None, other=None)[source] Bases:
sas.models.BaseComponent.BaseComponent
Basic model component for Division Provides basic arithmetics
-
getParam
(name)[source] Set the value of a model parameter @param name: name of the parameter @return: value of the parameter
-
getParamList
()[source] Return a list of all available parameters for the model
-
run
(x=0)[source] Evaluate each part of the component and sum the results @param x: input parameter @return: value of the model at x
-
runXY
(x=0)[source] Evaluate each part of the component and sum the results @param x: input parameter @return: value of the model at x
-
setParam
(name, value)[source] Set the value of a model parameter @param name: name of parameter to set @param value: value to give the paramter
-
sas.models.EllipsoidModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/ellipsoid.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.EllipsoidModel.
EllipsoidModel
(multfactor=1)[source] Bases:
CEllipsoidModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a EllipsoidModel model. This file was auto-generated from src/sas/models/include/ellipsoid.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- radius_a = 20.0 [A]
- scale = 1.0
- radius_b = 400.0 [A]
- sldEll = 4e-06 [1/A^(2)]
- sldSolv = 1e-06 [1/A^(2)]
- background = 0.0 [1/cm]
- axis_theta = 90.0 [deg]
- axis_phi = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.EllipsoidModel.
create_EllipsoidModel
()[source] Create a model instance
sas.models.EllipticalCylinderModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/elliptical_cylinder.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.EllipticalCylinderModel.
EllipticalCylinderModel
(multfactor=1)[source] Bases:
CEllipticalCylinderModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a EllipticalCylinderModel model. This file was auto-generated from src/sas/models/include/elliptical_cylinder.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- r_minor = 20.0 [A]
- scale = 1.0
- r_ratio = 1.5
- length = 400.0 [A]
- sldCyl = 4e-06 [1/A^(2)]
- sldSolv = 1e-06 [1/A^(2)]
- background = 0.0 [1/cm]
- cyl_theta = 90.0 [deg]
- cyl_phi = 0.0 [deg]
- cyl_psi = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.EllipticalCylinderModel.
create_EllipticalCylinderModel
()[source] Create a model instance
sas.models.FCCrystalModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/fcc.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.FCCrystalModel.
FCCrystalModel
(multfactor=1)[source] Bases:
CFCCrystalModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a FCCrystalModel model. This file was auto-generated from src/sas/models/include/fcc.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- dnn = 220.0 [A]
- d_factor = 0.06
- radius = 40.0 [A]
- sldSph = 3e-06 [1/A^(2)]
- sldSolv = 6.3e-06 [1/A^(2)]
- background = 0.0 [1/cm]
- theta = 0.0 [deg]
- phi = 0.0 [deg]
- psi = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.FCCrystalModel.
create_FCCrystalModel
()[source] Create a model instance
sas.models.FlexCylEllipXModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/flexcyl_ellipX.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.FlexCylEllipXModel.
FlexCylEllipXModel
(multfactor=1)[source] Bases:
CFlexCylEllipXModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a FlexCylEllipXModel model. This file was auto-generated from src/sas/models/include/flexcyl_ellipX.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- length = 1000.0 [A]
- kuhn_length = 100.0 [A]
- radius = 20.0 [A]
- axis_ratio = 1.5
- sldCyl = 1e-06 [1/A^(2)]
- sldSolv = 6.3e-06 [1/A^(2)]
- background = 0.0001 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.FlexCylEllipXModel.
create_FlexCylEllipXModel
()[source] Create a model instance
sas.models.FlexibleCylinderModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/flexible_cylinder.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.FlexibleCylinderModel.
FlexibleCylinderModel
(multfactor=1)[source] Bases:
CFlexibleCylinderModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a FlexibleCylinderModel model. This file was auto-generated from src/sas/models/include/flexible_cylinder.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- length = 1000.0 [A]
- kuhn_length = 100.0 [A]
- radius = 20.0 [A]
- sldCyl = 1e-06 [1/A^(2)]
- sldSolv = 6.3e-06 [1/A^(2)]
- background = 0.0001 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.FlexibleCylinderModel.
create_FlexibleCylinderModel
()[source] Create a model instance
sas.models.FractalCoreShellModel module
Fractal Core-Shell model
-
class
sas.models.FractalCoreShellModel.
FractalCoreShellModel
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a FractalCoreShellModel List of default parameters: volfraction = 0.05 radius = 20.0 [A] thickness = 5.0 [A] frac_dim = 2.0 cor_length = 100 [A] core_sld = 3.5e-006 [1/A^(2)] shell_sld = 1.0e-006 [1/A^(2)] solvent_sld = 6.35e-006 [1/A^(2)] background = 0.0 [1/cm]
-
run
(x=0.0)[source] Evaluate the model
: param x: input q-value (float or [float, float] as [r, theta]) : return: (DAB value)
-
runXY
(x=0.0)[source] Evaluate the model
: param x: input q-value (float or [float, float] as [qx, qy]) : return: DAB value
-
setParam
(name, value)[source] Set the value of a model parameter
: param name: name of the parameter : param value: value of the parameter
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
: param parameter: name of the parameter [string] :dispersion: dispersion object of type DispersionModel
-
sas.models.FractalModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/fractal.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.FractalModel.
FractalModel
(multfactor=1)[source] Bases:
CFractalModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a FractalModel model. This file was auto-generated from src/sas/models/include/fractal.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- radius = 5.0 [A]
- scale = 0.05
- fractal_dim = 2.0
- cor_length = 100.0 [A]
- sldBlock = 2e-06 [1/A^(2)]
- sldSolv = 6.35e-06 [1/A^(2)]
- background = 0.0 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.FractalModel.
create_FractalModel
()[source] Create a model instance
sas.models.FractalO_Z module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/FractalQtoN.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.FractalO_Z.
FractalO_Z
(multfactor=1)[source] Bases:
CFractalO_Z
,sas.models.BaseComponent.BaseComponent
Class that evaluates a FractalO_Z model. This file was auto-generated from src/sas/models/include/FractalQtoN.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 10000.0
- m_fractal = 1.8
- cluster_rg = 3520.0
- s_fractal = 2.5
- primary_rg = 82.0
- background = 0.01
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.FractalO_Z.
create_FractalO_Z
()[source] Create a model instance
sas.models.FuzzySphereModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/fuzzysphere.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.FuzzySphereModel.
FuzzySphereModel
(multfactor=1)[source] Bases:
CFuzzySphereModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a FuzzySphereModel model. This file was auto-generated from src/sas/models/include/fuzzysphere.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- radius = 60.0 [A]
- scale = 0.01
- fuzziness = 10.0 [A]
- sldSph = 1e-06 [1/A^(2)]
- sldSolv = 3e-06 [1/A^(2)]
- background = 0.001 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.FuzzySphereModel.
create_FuzzySphereModel
()[source] Create a model instance
sas.models.GaussLorentzGelModel module
Provide I(q) = I_0 exp ( - R_g^2 q^2 / 3.0) GaussLorentzGel function as a BaseComponent model
-
class
sas.models.GaussLorentzGelModel.
GaussLorentzGelModel
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a GaussLorentzGel model.
- I(q) = scale_g*exp(- q^2*Z^2 / 2)+scale_l/(1+q^2*z^2)
- background
- List of default parameters:
- scale_g = Gauss scale factor Z = Static correlation length scale_l = Lorentzian scale factor z = Dynamic correlation length background = Incoherent background
-
run
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [r, theta]) @return: (guinier value)
-
runXY
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [qx, qy]) @return: guinier value
sas.models.Gaussian module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/gaussian.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.Gaussian.
Gaussian
(multfactor=1)[source] Bases:
CGaussian
,sas.models.BaseComponent.BaseComponent
Class that evaluates a Gaussian model. This file was auto-generated from src/sas/models/include/gaussian.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- sigma = 1.0
- center = 0.0
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.Gaussian.
create_Gaussian
()[source] Create a model instance
sas.models.GelFitModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/GelFit.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.GelFitModel.
GelFitModel
(multfactor=1)[source] Bases:
CGelFitModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a GelFitModel model. This file was auto-generated from src/sas/models/include/GelFit.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- lScale = 3.5
- gScale = 1.7
- zeta = 16.0
- radius = 104.0
- FractalExp = 2.0
- background = 0.01
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.GelFitModel.
create_GelFitModel
()[source] Create a model instance
sas.models.GuinierModel module
Provide I(q) = I_0 exp ( - R_g^2 q^2 / 3.0) Guinier function as a BaseComponent model
-
class
sas.models.GuinierModel.
GuinierModel
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a Guinier model.
I(q) = I_0 exp ( - R_g^2 q^2 / 3.0 )
- List of default parameters:
- I_0 = Scale R_g = Radius of gyration
-
run
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [r, theta]) @return: (guinier value)
-
runXY
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [qx, qy]) @return: guinier value
sas.models.GuinierPorodModel module
Guinier function as a BaseComponent model
-
class
sas.models.GuinierPorodModel.
GuinierPorodModel
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a GuinierPorod model.
Calculate:
I(q) = scale/q^s exp(-q^2 Rg^2 / (3-s) ) for q<= ql I(q) = scale/q^m exp(-ql^2 Rg^2 / (3-s)) ql^(m-s) for q>=ql
-
run
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [r, theta]) @return: (guinier value)
-
runXY
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [qx, qy]) @return: guinier value
-
sas.models.HardsphereStructure module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/Hardsphere.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.HardsphereStructure.
HardsphereStructure
(multfactor=1)[source] Bases:
CHardsphereStructure
,sas.models.BaseComponent.BaseComponent
Class that evaluates a HardsphereStructure model. This file was auto-generated from src/sas/models/include/Hardsphere.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- effect_radius = 50.0 [A]
- volfraction = 0.2
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.HardsphereStructure.
create_HardsphereStructure
()[source] Create a model instance
sas.models.HayterMSAStructure module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/HayterMSA.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.HayterMSAStructure.
HayterMSAStructure
(multfactor=1)[source] Bases:
CHayterMSAStructure
,sas.models.BaseComponent.BaseComponent
Class that evaluates a HayterMSAStructure model. This file was auto-generated from src/sas/models/include/HayterMSA.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- effect_radius = 20.75 [A]
- charge = 19.0
- volfraction = 0.0192
- temperature = 318.16 [K]
- saltconc = 0.0 [M]
- dielectconst = 71.08
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.HayterMSAStructure.
create_HayterMSAStructure
()[source] Create a model instance
sas.models.HollowCylinderModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/hollow_cylinder.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.HollowCylinderModel.
HollowCylinderModel
(multfactor=1)[source] Bases:
CHollowCylinderModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a HollowCylinderModel model. This file was auto-generated from src/sas/models/include/hollow_cylinder.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- core_radius = 20.0 [A]
- radius = 30.0 [A]
- length = 400.0 [A]
- sldCyl = 6.3e-06 [1/A^(2)]
- sldSolv = 1e-06 [1/A^(2)]
- background = 0.01 [1/cm]
- axis_theta = 90.0 [deg]
- axis_phi = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.HollowCylinderModel.
create_HollowCylinderModel
()[source] Create a model instance
sas.models.LamellarFFHGModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/lamellarFF_HG.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.LamellarFFHGModel.
LamellarFFHGModel
(multfactor=1)[source] Bases:
CLamellarFFHGModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a LamellarFFHGModel model. This file was auto-generated from src/sas/models/include/lamellarFF_HG.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- t_length = 15.0 [A]
- h_thickness = 10.0 [A]
- sld_tail = 4e-07 [1/A^(2)]
- sld_head = 3e-06 [1/A^(2)]
- sld_solvent = 6e-06 [1/A^(2)]
- background = 0.0 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.LamellarFFHGModel.
create_LamellarFFHGModel
()[source] Create a model instance
sas.models.LamellarModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/lamellar.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.LamellarModel.
LamellarModel
(multfactor=1)[source] Bases:
CLamellarModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a LamellarModel model. This file was auto-generated from src/sas/models/include/lamellar.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- bi_thick = 50.0 [A]
- sld_bi = 1e-06 [1/A^(2)]
- sld_sol = 6.3e-06 [1/A^(2)]
- background = 0.0 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.LamellarModel.
create_LamellarModel
()[source] Create a model instance
sas.models.LamellarPCrystalModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/lamellarPC.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.LamellarPCrystalModel.
LamellarPCrystalModel
(multfactor=1)[source] Bases:
CLamellarPCrystalModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a LamellarPCrystalModel model. This file was auto-generated from src/sas/models/include/lamellarPC.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- thickness = 33.0 [A]
- Nlayers = 20.0
- spacing = 250.0 [A]
- pd_spacing = 0.0
- sld_layer = 1e-06 [1/A^(2)]
- sld_solvent = 6.34e-06 [1/A^(2)]
- background = 0.0 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.LamellarPCrystalModel.
create_LamellarPCrystalModel
()[source] Create a model instance
sas.models.LamellarPSHGModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/lamellarPS_HG.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.LamellarPSHGModel.
LamellarPSHGModel
(multfactor=1)[source] Bases:
CLamellarPSHGModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a LamellarPSHGModel model. This file was auto-generated from src/sas/models/include/lamellarPS_HG.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- spacing = 40.0 [A]
- deltaT = 10.0 [A]
- deltaH = 2.0 [A]
- sld_tail = 4e-07 [1/A^(2)]
- sld_head = 2e-06 [1/A^(2)]
- sld_solvent = 6e-06 [1/A^(2)]
- n_plates = 30.0
- caille = 0.001
- background = 0.001 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.LamellarPSHGModel.
create_LamellarPSHGModel
()[source] Create a model instance
sas.models.LamellarPSModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/lamellarPS.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.LamellarPSModel.
LamellarPSModel
(multfactor=1)[source] Bases:
CLamellarPSModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a LamellarPSModel model. This file was auto-generated from src/sas/models/include/lamellarPS.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- spacing = 400.0 [A]
- delta = 30.0 [A]
- sld_bi = 6.3e-06 [1/A^(2)]
- sld_sol = 1e-06 [1/A^(2)]
- n_plates = 20.0
- caille = 0.1
- background = 0.0 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.LamellarPSModel.
create_LamellarPSModel
()[source] Create a model instance
sas.models.LineModel module
Provide Line function (y= A + Bx) as a BaseComponent model
-
class
sas.models.LineModel.
LineModel
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a linear model.
f(x) = A + Bx
- List of default parameters:
- A = 1.0 B = 1.0
-
evalDistribution
(qdist)[source] Evaluate a distribution of q-values.
For 1D, a numpy array is expected as input:
evalDistribution(q)
where q is a numpy array.
- For 2D, a list of numpy arrays are expected: [qx_prime,qy_prime], where 1D arrays,
Parameters: qdist – ndarray of scalar q-values or list [qx,qy] where qx,qy are 1D ndarrays
-
run
(x=0.0)[source] Evaluate the model @param x: simple value @return: (Line value)
-
runXY
(x=0.0)[source] Evaluate the model @param x: simple value @return: Line value
sas.models.LinearPearlsModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/linearpearls.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.LinearPearlsModel.
LinearPearlsModel
(multfactor=1)[source] Bases:
CLinearPearlsModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a LinearPearlsModel model. This file was auto-generated from src/sas/models/include/linearpearls.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- radius = 80.0 [A]
- edge_separation = 350.0 [A]
- num_pearls = 3.0
- sld_pearl = 1e-06 [1/A^(2)]
- sld_solv = 6.3e-06 [1/A^(2)]
- background = 0.0
- scale = 1.0
- radius = 80.0 [A]
- edge_separation = 350.0 [A]
- num_pearls = 3.0
- sld_pearl = 1e-06 [1/A^(2)]
- sld_solv = 6.3e-06 [1/A^(2)]
- background = 0.0
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.LinearPearlsModel.
create_LinearPearlsModel
()[source] Create a model instance
sas.models.LogNormal module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/logNormal.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.LogNormal.
LogNormal
(multfactor=1)[source] Bases:
CLogNormal
,sas.models.BaseComponent.BaseComponent
Class that evaluates a LogNormal model. This file was auto-generated from src/sas/models/include/logNormal.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- sigma = 1.0
- center = 0.0
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.LogNormal.
create_LogNormal
()[source] Create a model instance
sas.models.LorentzModel module
Provide F(x) = scale/( 1 + (x*L)^2 ) + bkd Lorentz (Ornstein-Zernicke) function as a BaseComponent model
-
class
sas.models.LorentzModel.
LorentzModel
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a Lorentz (Ornstein-Zernicke) model.
F(x) = scale/( 1 + (x*L)^2 ) + bkd
- The model has three parameters:
- L = screen Length scale = scale factor bkd = incoherent background
-
run
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [r, theta]) @return: (Lorentz value)
-
runXY
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [qx, qy]) @return: Lorentz value
sas.models.Lorentzian module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/lorentzian.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.Lorentzian.
Lorentzian
(multfactor=1)[source] Bases:
CLorentzian
,sas.models.BaseComponent.BaseComponent
Class that evaluates a Lorentzian model. This file was auto-generated from src/sas/models/include/lorentzian.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- gamma = 1.0
- center = 0.0
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.Lorentzian.
create_Lorentzian
()[source] Create a model instance
sas.models.MassFractalModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/massfractal.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.MassFractalModel.
MassFractalModel
(multfactor=1)[source] Bases:
CMassFractalModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a MassFractalModel model. This file was auto-generated from src/sas/models/include/massfractal.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- radius = 10.0 [A]
- mass_dim = 1.9
- co_length = 100.0 [A]
- background = 0.0
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.MassFractalModel.
create_MassFractalModel
()[source] Create a model instance
sas.models.MassSurfaceFractal module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/masssurfacefractal.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.MassSurfaceFractal.
MassSurfaceFractal
(multfactor=1)[source] Bases:
CMassSurfaceFractal
,sas.models.BaseComponent.BaseComponent
Class that evaluates a MassSurfaceFractal model. This file was auto-generated from src/sas/models/include/masssurfacefractal.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- mass_dim = 1.8
- surface_dim = 2.3
- cluster_rg = 86.7 [A]
- primary_rg = 4000.0 [A]
- background = 0.0
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.MassSurfaceFractal.
create_MassSurfaceFractal
()[source] Create a model instance
sas.models.MicelleSphCoreModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/micelleSphCore.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.MicelleSphCoreModel.
MicelleSphCoreModel
(multfactor=1)[source] Bases:
CMicelleSphCoreModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a MicelleSphCoreModel model. This file was auto-generated from src/sas/models/include/micelleSphCore.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- ndensity = 8.94e+15 [1/cm^(3)]
- v_core = 62624.0 [A^3]
- v_corona = 61940.0 [A^(3)]
- rho_solv = 6.4e-06 [1/A^(2)]
- rho_core = 3.4e-07 [1/A^(2)]
- rho_corona = 8e-07 [1/A^(2)]
- radius_core = 45.0 [A]
- radius_gyr = 20.0 [A]
- d_penetration = 1.0
- n_aggreg = 6.0
- background = 0.0 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.MicelleSphCoreModel.
create_MicelleSphCoreModel
()[source] Create a model instance
sas.models.ModelAdaptor module
This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation.
If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence:
“This work benefited from DANSE software developed under NSF award DMR-0520547.”
copyright 2008, University of Tennessee
-
class
sas.models.ModelAdaptor.
ModelAdaptor
[source] Bases:
object
Model adaptor to provide old-style model functionality
-
getParamListWithToken
(token, member)[source] get Param List With Token
-
getParamWithToken
(name, token, member)[source] get Param With Token
-
setParamWithToken
(name, value, token, member)[source] set Param With Token
-
-
class
sas.models.ModelAdaptor.
ParameterDict
(parameters)[source] Bases:
dict
Parameter dictionary used for backward compatibility between the old-style ‘params’ dictionary and the new-style ‘parameters’ dictionary.
sas.models.MulComponent module
Provide base functionality for all model components @author: Mathieu Doucet / UTK @contact: mathieu.doucet@nist.gov
-
class
sas.models.MulComponent.
MulComponent
(base=None, other=None)[source] Bases:
sas.models.BaseComponent.BaseComponent
Basic model component for Multiply Provides basic arithmetics
-
getParam
(name)[source] Set the value of a model parameter @param name: name of the parameter @return: value of the parameter
-
getParamList
()[source] Return a list of all available parameters for the model
-
run
(x=0)[source] Evaluate each part of the component and sum the results @param x: input parameter @return: value of the model at x
-
runXY
(x=0)[source] Evaluate each part of the component and sum the results @param x: input parameter @return: value of the model at x
-
setParam
(name, value)[source] Set the value of a model parameter @param name: name of parameter to set @param value: value to give the paramter
-
sas.models.MultiShellModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/multishell.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.MultiShellModel.
MultiShellModel
(multfactor=1)[source] Bases:
CMultiShellModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a MultiShellModel model. This file was auto-generated from src/sas/models/include/multishell.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- core_radius = 60.0 [A]
- s_thickness = 10.0 [A]
- w_thickness = 10.0 [A]
- core_sld = 6.4e-06 [1/A^(2)]
- shell_sld = 4e-07 [1/A^(2)]
- n_pairs = 2.0
- background = 0.0 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.MultiShellModel.
create_MultiShellModel
()[source] Create a model instance
sas.models.MultiplicationModel module
-
class
sas.models.MultiplicationModel.
MultiplicationModel
(p_model, s_model)[source] Bases:
sas.models.BaseComponent.BaseComponent
Use for P(Q)*S(Q); function call must be in the order of P(Q) and then S(Q): The model parameters are combined from both models, P(Q) and S(Q), except 1) ‘effect_radius’ of S(Q) which will be calculated from P(Q) via calculate_ER(), and 2) ‘scale’ in P model which is synchronized w/ volfraction in S then P*S is multiplied by a new parameter, ‘scale_factor’. The polydispersion is applicable only to P(Q), not to S(Q).
Note
P(Q) refers to ‘form factor’ model while S(Q) does to ‘structure factor’.
-
evalDistribution
(x=[])[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
fill_description
(p_model, s_model)[source] Fill the description for P(Q)*S(Q)
-
getProfile
()[source] Get SLD profile of p_model if exists
Returns: (r, beta) where r is a list of radius of the transition points beta is a list of the corresponding SLD values Note
This works only for func_shell num = 2 (exp function).
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q-value (float or [float, float] as [r, theta]) Returns: (scattering function value)
-
runXY
(x=0.0)[source] Evaluate the model
Parameters: x – input q-value (float or [float, float] as [qx, qy]) Returns: scattering function value
-
setParam
(name, value)[source] Set the value of a model parameter
Parameters: - name – name of the parameter
- value – value of the parameter
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: parameter – name of the parameter [string] Dispersion: dispersion object of type DispersionModel
-
sas.models.NoStructure module
Provide sin(x) function as a BaseComponent model
-
class
sas.models.NoStructure.
NoStructure
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a sin(x) model.
-
clone
()[source] Return a identical copy of self
-
run
(x=0.0)[source] Evaluate the model @param x: input x @return: 1
-
runXY
(x=0.0)[source] Evaluate the model @param x: input x, or [x, y] [radian] @return: sin(x) or sin(x)*sin(y)
-
sas.models.NullModel module
Provide sin(x) function as a BaseComponent model
-
class
sas.models.NullModel.
NullModel
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a sin(x) model.
-
clone
()[source] Return a identical copy of self
-
run
(x=0.0)[source] Evaluate the model @param x: input x @return: 1
-
runXY
(x=0.0)[source] Evaluate the model @param x: input x, or [x, y] [radian] @return: sin(x) or sin(x)*sin(y)
-
sas.models.OnionExpShellModel module
-
class
sas.models.OnionExpShellModel.
OnionExpShellModel
(n_shells=1)[source] Bases:
sas.models.BaseComponent.BaseComponent
This multi-model is based on CoreMultiShellModel with exponential func shells and provides the capability of changing the number of shells between 1 and 10.
-
evalDistribution
(x=[])[source] Evaluate the model in cartesian coordinates
: param x: input q[], or [qx[], qy[]] : return: scattering function P(q[])
-
getProfile
()[source] Get SLD profile
- : return: (r, beta) where r is a list of radius of the transition
- points and beta is a list of the corresponding SLD values
-
run
(x=0.0)[source] Evaluate the model
: param x: input q-value (float or [float, float] as [r, theta]) : return: (I value)
-
runXY
(x=0.0)[source] Evaluate the model
: param x: input q-value (float or [float, float] as [qx, qy]) : return: I value
-
setParam
(name, value)[source] Set the value of a model parameter
: param name: name of the parameter : param value: value of the parameter
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
: param parameter: name of the parameter [string] :dispersion: dispersion object of type DispersionModel
-
sas.models.OnionModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/onion.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.OnionModel.
OnionModel
(multfactor=1)[source] Bases:
COnionModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a OnionModel model. This file was auto-generated from src/sas/models/include/onion.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- n_shells = 1.0
- scale = 1.0
- rad_core0 = 200.0 [A]
- sld_core0 = 1e-06 [1/A^(2)]
- sld_solv = 6.4e-06 [1/A^(2)]
- background = 0.0 [1/cm]
- sld_out_shell1 = 2e-06 [1/A^(2)]
- sld_out_shell2 = 2.5e-06 [1/A^(2)]
- sld_out_shell3 = 3e-06 [1/A^(2)]
- sld_out_shell4 = 3.5e-06 [1/A^(2)]
- sld_out_shell5 = 4e-06 [1/A^(2)]
- sld_out_shell6 = 4.5e-06 [1/A^(2)]
- sld_out_shell7 = 5e-06 [1/A^(2)]
- sld_out_shell8 = 5.5e-06 [1/A^(2)]
- sld_out_shell9 = 6e-06 [1/A^(2)]
- sld_out_shell10 = 6.2e-06 [1/A^(2)]
- sld_in_shell1 = 1.7e-06 [1/A^(2)]
- sld_in_shell2 = 2.2e-06 [1/A^(2)]
- sld_in_shell3 = 2.7e-06 [1/A^(2)]
- sld_in_shell4 = 3.2e-06 [1/A^(2)]
- sld_in_shell5 = 3.7e-06 [1/A^(2)]
- sld_in_shell6 = 4.2e-06 [1/A^(2)]
- sld_in_shell7 = 4.7e-06 [1/A^(2)]
- sld_in_shell8 = 5.2e-06 [1/A^(2)]
- sld_in_shell9 = 5.7e-06 [1/A^(2)]
- sld_in_shell10 = 6e-06 [1/A^(2)]
- A_shell1 = 1.0
- A_shell2 = 1.0
- A_shell3 = 1.0
- A_shell4 = 1.0
- A_shell5 = 1.0
- A_shell6 = 1.0
- A_shell7 = 1.0
- A_shell8 = 1.0
- A_shell9 = 1.0
- A_shell10 = 1.0
- thick_shell1 = 50.0 [A]
- thick_shell2 = 50.0 [A]
- thick_shell3 = 50.0 [A]
- thick_shell4 = 50.0 [A]
- thick_shell5 = 50.0 [A]
- thick_shell6 = 50.0 [A]
- thick_shell7 = 50.0 [A]
- thick_shell8 = 50.0 [A]
- thick_shell9 = 50.0 [A]
- thick_shell10 = 50.0 [A]
- func_shell1 = 2.0
- func_shell2 = 2.0
- func_shell3 = 2.0
- func_shell4 = 2.0
- func_shell5 = 2.0
- func_shell6 = 2.0
- func_shell7 = 2.0
- func_shell8 = 2.0
- func_shell9 = 2.0
- func_shell10 = 2.0
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.OnionModel.
create_OnionModel
()[source] Create a model instance
sas.models.ParallelepipedModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/parallelepiped.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.ParallelepipedModel.
ParallelepipedModel
(multfactor=1)[source] Bases:
CParallelepipedModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a ParallelepipedModel model. This file was auto-generated from src/sas/models/include/parallelepiped.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- short_a = 35.0 [A]
- short_b = 75.0 [A]
- long_c = 400.0 [A]
- sldPipe = 6.3e-06 [1/A^(2)]
- sldSolv = 1e-06 [1/A^(2)]
- background = 0.0 [1/cm]
- parallel_theta = 0.0 [deg]
- parallel_phi = 0.0 [deg]
- parallel_psi = 0.0 [deg]
- M0_sld_pipe = 0.0 [1/A^(2)]
- M_theta_pipe = 0.0 [deg]
- M_phi_pipe = 0.0 [deg]
- M0_sld_solv = 0.0 [1/A^(2)]
- M_theta_solv = 0.0 [deg]
- M_phi_solv = 0.0 [deg]
- Up_frac_i = 0.5 [u/(u+d)]
- Up_frac_f = 0.5 [u/(u+d)]
- Up_theta = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.ParallelepipedModel.
create_ParallelepipedModel
()[source] Create a model instance
sas.models.PeakGaussModel module
PeakGaussModel function as a BaseComponent model
-
class
sas.models.PeakGaussModel.
PeakGaussModel
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a gaussian shaped peak with a flat background.
F(q) = scale exp( -1/2 [(q-qo)/B]^2 )+ background
- The model has three parameters:
- scale = scale q0 = peak position B = standard deviation background= incoherent background
-
run
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [r, theta]) @return: (Peak Gaussian value)
-
runXY
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [qx, qy]) @return: Peak Gaussian value
sas.models.PeakLorentzModel module
Model describes a Lorentzian shaped peak including a flat background Provide F(q) = scale/(1+[(q-q0)/B]^2 ) + background PeakLorentzModel function as a BaseComponent model
-
class
sas.models.PeakLorentzModel.
PeakLorentzModel
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a gaussian shaped peak.
F(q) = scale/(1+[(q-q0)/B]^2 ) + background
- The model has three parameters:
- scale = scale q0 = peak position B = ( hwhm) half-width-halfmaximum background= incoherent background
-
run
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [r, theta]) @return: Peak Lorentzian value
-
runXY
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [qx, qy]) @return: Peak Lorentzian value
sas.models.PearlNecklaceModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/pearlnecklace.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.PearlNecklaceModel.
PearlNecklaceModel
(multfactor=1)[source] Bases:
CPearlNecklaceModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a PearlNecklaceModel model. This file was auto-generated from src/sas/models/include/pearlnecklace.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- radius = 80.0 [A]
- edge_separation = 350.0 [A]
- thick_string = 2.5 [A]
- num_pearls = 3.0
- sld_pearl = 1e-06 [1/A^(2)]
- sld_string = 1e-06 [1/A^(2)]
- sld_solv = 6.3e-06 [1/A^(2)]
- background = 0.0
- scale = 1.0
- radius = 80.0 [A]
- edge_separation = 350.0 [A]
- thick_string = 2.5 [A]
- num_pearls = 3.0
- sld_pearl = 1e-06 [1/A^(2)]
- sld_string = 1e-06 [1/A^(2)]
- sld_solv = 6.3e-06 [1/A^(2)]
- background = 0.0
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.PearlNecklaceModel.
create_PearlNecklaceModel
()[source] Create a model instance
sas.models.Poly_GaussCoil module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/polygausscoil.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.Poly_GaussCoil.
Poly_GaussCoil
(multfactor=1)[source] Bases:
CPoly_GaussCoil
,sas.models.BaseComponent.BaseComponent
Class that evaluates a Poly_GaussCoil model. This file was auto-generated from src/sas/models/include/polygausscoil.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- rg = 60.0 [A]
- scale = 1.0
- poly_m = 2.0 [Mw/Mn]
- background = 0.001 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.Poly_GaussCoil.
create_Poly_GaussCoil
()[source] Create a model instance
sas.models.PolymerExclVolume module
-
class
sas.models.PolymerExclVolume.
PolymerExclVolume
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a PolymerExclVolModel model. This file was auto-generated from ..c_extensionspolyexclvol.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 0.01
- rg = 100.0 [A]
- m = 3.0
- background = 0.0 [1/cm]
-
run
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [r, theta]) @return: (guinier value)
-
runXY
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [qx, qy]) @return: guinier value
sas.models.PorodModel module
Provide I(q) = C/q^4, Porod function as a BaseComponent model
-
class
sas.models.PorodModel.
PorodModel
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a Porod model. I(q) = scale/q^4 +background
-
run
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [r, theta]) @return: (porod value)
-
runXY
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [qx, qy]) @return: porod value
-
sas.models.PowerLawAbsModel module
Provide F(x) = scale* (|x|)^(-m) + bkd Power law function as a BaseComponent model
-
class
sas.models.PowerLawAbsModel.
PowerLawAbsModel
[source] Bases:
sas.models.PowerLawModel.PowerLawModel
Class that evaluates a absolute Power_Law model.
F(x) = scale* (|x|)^(-m) + bkd
The model has three parameters:
- m = power
- scale = scale factor
- bkd = incoherent background
sas.models.PowerLawModel module
Provide F(x) = scale* (x)^(-m) + bkd Power law function as a BaseComponent model
-
class
sas.models.PowerLawModel.
PowerLawModel
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a Power_Law model.
F(x) = scale* (x)^(-m) + bkd
- The model has three parameters:
- m = power scale = scale factor bkd = incoherent background
-
run
(x=0.0)[source] Evaluate the model :param x: input q-value (float or [float, float] as [r, theta]) :return: (PowerLaw value)
-
runXY
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [qx, qy]) @return: PowerLaw value
sas.models.PringlesModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/pringles.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.PringlesModel.
PringlesModel
(multfactor=1)[source] Bases:
CPringlesModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a PringlesModel model. This file was auto-generated from src/sas/models/include/pringles.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- radius = 60.0 [A]
- thickness = 10.0 [A]
- alpha = 0.001 [rad]
- beta = 0.02 [rad]
- sld_pringle = 1e-06 [A^(-2)]
- sld_solvent = 6.35e-06 [A^(-2)]
- background = 0.0 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.PringlesModel.
create_PringlesModel
()[source] Create a model instance
sas.models.RPA10Model module
-
class
sas.models.RPA10Model.
RPA10Model
(multfactor=1)[source] Bases:
sas.models.BaseComponent.BaseComponent
This multi-model is based on Parratt formalism and provides the capability of changing the number of layers between 0 and 10.
-
calculate_ER
()[source]
-
evalDistribution
(x=[])[source] Evaluate the model in cartesian coordinates
: param x: input q[], or [qx[], qy[]] : return: scattering function P(q[])
-
getProfile
()[source] Get SLD profile
: return: None, No SLD profile supporting for this model
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model
: param x: input q-value (float or [float, float] as [qx, qy]) : return: scattering function value
-
setParam
(name, value)[source] Set the value of a model parameter
: param name: name of the parameter : param value: value of the parameter
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
: param parameter: name of the parameter [string] :dispersion: dispersion object of type DispersionModel
-
sas.models.RPAModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/rpa.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.RPAModel.
RPAModel
(multfactor=1)[source] Bases:
CRPAModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a RPAModel model. This file was auto-generated from src/sas/models/include/rpa.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- lcase_n = 0.0
- ba = 5.0
- bb = 5.0
- bc = 5.0
- bd = 5.0
- Kab = -0.0004
- Kac = -0.0004
- Kad = -0.0004
- Kbc = -0.0004
- Kbd = -0.0004
- Kcd = -0.0004
- scale = 1.0
- background = 0.0 [1/cm]
- Na = 1000.0
- Phia = 0.25
- va = 100.0
- La = 1e-12
- Nb = 1000.0
- Phib = 0.25
- vb = 100.0
- Lb = 1e-12
- Nc = 1000.0
- Phic = 0.25
- vc = 100.0
- Lc = 1e-12
- Nd = 1000.0
- Phid = 0.25
- vd = 100.0
- Ld = 0.0
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.RPAModel.
create_RPAModel
()[source] Create a model instance
sas.models.RaspBerryModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/raspberry.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.RaspBerryModel.
RaspBerryModel
(multfactor=1)[source] Bases:
CRaspBerryModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a RaspBerryModel model. This file was auto-generated from src/sas/models/include/raspberry.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- volf_Lsph = 0.05
- radius_Lsph = 5000.0 [A]
- sld_Lsph = -4e-07 [1/A^(2)]
- volf_Ssph = 0.005
- radius_Ssph = 100.0 [A]
- surfrac_Ssph = 0.4
- sld_Ssph = 3.5e-06 [1/A^(2)]
- delta_Ssph = 0.0
- sld_solv = 6.3e-06 [1/A^(2)]
- background = 0.0 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.RaspBerryModel.
create_RaspBerryModel
()[source] Create a model instance
sas.models.RectangularHollowPrismInfThinWallsModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/RectangularHollowPrismInfThinWalls.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.RectangularHollowPrismInfThinWallsModel.
RectangularHollowPrismInfThinWallsModel
(multfactor=1)[source] Bases:
CRectangularHollowPrismInfThinWallsModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a RectangularHollowPrismInfThinWallsModel model. This file was auto-generated from src/sas/models/include/RectangularHollowPrismInfThinWalls.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- short_side = 35.0 [A]
- b2a_ratio = 1.0 [adim]
- c2a_ratio = 1.0 [adim]
- sldPipe = 6.3e-06 [1/A^(2)]
- sldSolv = 1e-06 [1/A^(2)]
- background = 0.0 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.RectangularHollowPrismInfThinWallsModel.
create_RectangularHollowPrismInfThinWallsModel
()[source] Create a model instance
sas.models.RectangularHollowPrismModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/RectangularHollowPrism.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.RectangularHollowPrismModel.
RectangularHollowPrismModel
(multfactor=1)[source] Bases:
CRectangularHollowPrismModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a RectangularHollowPrismModel model. This file was auto-generated from src/sas/models/include/RectangularHollowPrism.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- short_side = 35.0 [A]
- b2a_ratio = 1.0 [adim]
- c2a_ratio = 1.0 [adim]
- thickness = 1.0 [A]
- sldPipe = 6.3e-06 [1/A^(2)]
- sldSolv = 1e-06 [1/A^(2)]
- background = 0.0 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.RectangularHollowPrismModel.
create_RectangularHollowPrismModel
()[source] Create a model instance
sas.models.RectangularPrismModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/RectangularPrism.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.RectangularPrismModel.
RectangularPrismModel
(multfactor=1)[source] Bases:
CRectangularPrismModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a RectangularPrismModel model. This file was auto-generated from src/sas/models/include/RectangularPrism.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- short_side = 35.0 [A]
- b2a_ratio = 1.0 [adim]
- c2a_ratio = 1.0 [adim]
- sldPipe = 6.3e-06 [1/A^(2)]
- sldSolv = 1e-06 [1/A^(2)]
- background = 0.0 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.RectangularPrismModel.
create_RectangularPrismModel
()[source] Create a model instance
sas.models.ReflAdvModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/refl_adv.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.ReflAdvModel.
ReflAdvModel
(multfactor=1)[source] Bases:
CReflAdvModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a ReflAdvModel model. This file was auto-generated from src/sas/models/include/refl_adv.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- n_layers = 1.0
- scale = 1.0
- thick_inter0 = 50.0 [A]
- func_inter0 = 0.0
- sld_bottom0 = 2.07e-06 [1/A^(2)]
- sld_medium = 1e-06 [1/A^(2)]
- background = 0.0
- sld_flat1 = 4e-06 [1/A^(2)]
- sld_flat2 = 3.5e-06 [1/A^(2)]
- sld_flat3 = 4e-06 [1/A^(2)]
- sld_flat4 = 3.5e-06 [1/A^(2)]
- sld_flat5 = 4e-06 [1/A^(2)]
- sld_flat6 = 3.5e-06 [1/A^(2)]
- sld_flat7 = 4e-06 [1/A^(2)]
- sld_flat8 = 3.5e-06 [1/A^(2)]
- sld_flat9 = 4e-06 [1/A^(2)]
- sld_flat10 = 3.5e-06 [1/A^(2)]
- thick_inter1 = 50.0 [A]
- thick_inter2 = 50.0 [A]
- thick_inter3 = 50.0 [A]
- thick_inter4 = 50.0 [A]
- thick_inter5 = 50.0 [A]
- thick_inter6 = 50.0 [A]
- thick_inter7 = 50.0 [A]
- thick_inter8 = 50.0 [A]
- thick_inter9 = 50.0 [A]
- thick_inter10 = 50.0 [A]
- thick_flat1 = 100.0 [A]
- thick_flat2 = 100.0 [A]
- thick_flat3 = 100.0 [A]
- thick_flat4 = 100.0 [A]
- thick_flat5 = 100.0 [A]
- thick_flat6 = 100.0 [A]
- thick_flat7 = 100.0 [A]
- thick_flat8 = 100.0 [A]
- thick_flat9 = 100.0 [A]
- thick_flat10 = 100.0 [A]
- func_inter1 = 0.0
- func_inter2 = 0.0
- func_inter3 = 0.0
- func_inter4 = 0.0
- func_inter5 = 0.0
- func_inter6 = 0.0
- func_inter7 = 0.0
- func_inter8 = 0.0
- func_inter9 = 0.0
- func_inter10 = 0.0
- sldIM_flat1 = 0.0 [1/A^(2)]
- sldIM_flat2 = 0.0 [1/A^(2)]
- sldIM_flat3 = 0.0 [1/A^(2)]
- sldIM_flat4 = 0.0 [1/A^(2)]
- sldIM_flat5 = 0.0 [1/A^(2)]
- sldIM_flat6 = 0.0 [1/A^(2)]
- sldIM_flat7 = 0.0 [1/A^(2)]
- sldIM_flat8 = 0.0 [1/A^(2)]
- sldIM_flat9 = 0.0 [1/A^(2)]
- sldIM_flat10 = 0.0 [1/A^(2)]
- nu_inter1 = 2.5
- nu_inter2 = 2.5
- nu_inter3 = 2.5
- nu_inter4 = 2.5
- nu_inter5 = 2.5
- nu_inter6 = 2.5
- nu_inter7 = 2.5
- nu_inter8 = 2.5
- nu_inter9 = 2.5
- nu_inter10 = 2.5
- sldIM_sub0 = 0.0
- sldIM_medium = 0.0
- npts_inter = 21.0
- nu_inter0 = 2.5
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.ReflAdvModel.
create_ReflAdvModel
()[source] Create a model instance
sas.models.ReflModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/refl.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.ReflModel.
ReflModel
(multfactor=1)[source] Bases:
CReflModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a ReflModel model. This file was auto-generated from src/sas/models/include/refl.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- n_layers = 1.0
- scale = 1.0
- thick_inter0 = 1.0 [A]
- func_inter0 = 0.0
- sld_bottom0 = 2.07e-06 [1/A^(2)]
- sld_medium = 1e-06 [1/A^(2)]
- background = 0.0
- sld_flat1 = 4e-06 [1/A^(2)]
- sld_flat2 = 3.5e-06 [1/A^(2)]
- sld_flat3 = 4e-06 [1/A^(2)]
- sld_flat4 = 3.5e-06 [1/A^(2)]
- sld_flat5 = 4e-06 [1/A^(2)]
- sld_flat6 = 3.5e-06 [1/A^(2)]
- sld_flat7 = 4e-06 [1/A^(2)]
- sld_flat8 = 3.5e-06 [1/A^(2)]
- sld_flat9 = 4e-06 [1/A^(2)]
- sld_flat10 = 3.5e-06 [1/A^(2)]
- thick_inter1 = 1.0 [A]
- thick_inter2 = 1.0 [A]
- thick_inter3 = 1.0 [A]
- thick_inter4 = 1.0 [A]
- thick_inter5 = 1.0 [A]
- thick_inter6 = 1.0 [A]
- thick_inter7 = 1.0 [A]
- thick_inter8 = 1.0 [A]
- thick_inter9 = 1.0 [A]
- thick_inter10 = 1.0 [A]
- thick_flat1 = 10.0 [A]
- thick_flat2 = 100.0 [A]
- thick_flat3 = 100.0 [A]
- thick_flat4 = 100.0 [A]
- thick_flat5 = 100.0 [A]
- thick_flat6 = 100.0 [A]
- thick_flat7 = 100.0 [A]
- thick_flat8 = 100.0 [A]
- thick_flat9 = 100.0 [A]
- thick_flat10 = 100.0 [A]
- func_inter1 = 0.0
- func_inter2 = 0.0
- func_inter3 = 0.0
- func_inter4 = 0.0
- func_inter5 = 0.0
- func_inter6 = 0.0
- func_inter7 = 0.0
- func_inter8 = 0.0
- func_inter9 = 0.0
- func_inter10 = 0.0
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.ReflModel.
create_ReflModel
()[source] Create a model instance
sas.models.ReflectivityIIModel module
-
class
sas.models.ReflectivityIIModel.
ReflectivityIIModel
(multfactor=1)[source] Bases:
sas.models.BaseComponent.BaseComponent
This multi-model is based on Parratt formalism and provides the capability of changing the number of layers between 0 and 10.
-
calculate_ER
()[source]
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
: param x: input q[], or [qx[], qy[]] : return: scattering function P(q[])
-
getProfile
()[source] Get SLD profile
- : return: (z, beta) where z is a list of depth of the transition points
- beta is a list of the corresponding SLD values
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model
: param x: input q-value (float or [float, float] as [qx, qy]) : return: scattering function value
-
setParam
(name, value)[source] Set the value of a model parameter
: param name: name of the parameter : param value: value of the parameter
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
: param parameter: name of the parameter [string] :dispersion: dispersion object of type DispersionModel
-
sas.models.ReflectivityModel module
-
class
sas.models.ReflectivityModel.
ReflectivityModel
(multfactor=1)[source] Bases:
sas.models.BaseComponent.BaseComponent
This multi-model is based on Parratt formalism and provides the capability of changing the number of layers between 0 and 10.
-
calculate_ER
()[source]
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
: param x: input q[], or [qx[], qy[]] : return: scattering function P(q[])
-
getProfile
()[source] Get SLD profile
- : return: (z, beta) where z is a list of depth of the transition points
- beta is a list of the corresponding SLD values
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model
: param x: input q-value (float or [float, float] as [qx, qy]) : return: scattering function value
-
setParam
(name, value)[source] Set the value of a model parameter
: param name: name of the parameter : param value: value of the parameter
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
: param parameter: name of the parameter [string] :dispersion: dispersion object of type DispersionModel
-
sas.models.SCCrystalModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/sc.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.SCCrystalModel.
SCCrystalModel
(multfactor=1)[source] Bases:
CSCCrystalModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a SCCrystalModel model. This file was auto-generated from src/sas/models/include/sc.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- dnn = 220.0 [A]
- d_factor = 0.06
- radius = 40.0 [A]
- sldSph = 3e-06 [1/A^(2)]
- sldSolv = 6.3e-06 [1/A^(2)]
- background = 0.0 [1/cm]
- theta = 0.0 [deg]
- phi = 0.0 [deg]
- psi = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.SCCrystalModel.
create_SCCrystalModel
()[source] Create a model instance
sas.models.SLDCalFunc module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/sld_cal.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.SLDCalFunc.
SLDCalFunc
(multfactor=1)[source] Bases:
CSLDCalFunc
,sas.models.BaseComponent.BaseComponent
Class that evaluates a SLDCalFunc model. This file was auto-generated from src/sas/models/include/sld_cal.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- fun_type = 0.0
- npts_inter = 21.0
- shell_num = 0.0
- nu_inter = 2.5
- sld_left = 0.0 [1/A^(2)]
- sld_right = 0.0 [1/A^(2)]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.SLDCalFunc.
create_SLDCalFunc
()[source] Create a model instance
sas.models.Schulz module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/schulz.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.Schulz.
Schulz
(multfactor=1)[source] Bases:
CSchulz
,sas.models.BaseComponent.BaseComponent
Class that evaluates a Schulz model. This file was auto-generated from src/sas/models/include/schulz.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- sigma = 1.0
- center = 0.0
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.Schulz.
create_Schulz
()[source] Create a model instance
sas.models.Sin module
Provide sin(x) function as a BaseComponent model
-
class
sas.models.Sin.
Sin
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a sin(x) model.
-
clone
()[source] Return a identical copy of self
-
run
(x=0.0)[source] Evaluate the model @param x: input x, or [x, phi] [radian] @return: sin(x) or sin(x*cos(phi))*sin(x*sin(phi))
-
runXY
(x=0.0)[source] Evaluate the model @param x: input x, or [x, y] [radian] @return: sin(x) or sin(x)*sin(y)
-
sas.models.SphereModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/sphere.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.SphereModel.
SphereModel
(multfactor=1)[source] Bases:
CSphereModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a SphereModel model. This file was auto-generated from src/sas/models/include/sphere.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- radius = 60.0 [A]
- sldSph = 2e-06 [1/A^(2)]
- sldSolv = 1e-06 [1/A^(2)]
- background = 0.0 [1/cm]
- M0_sld_sph = 0.0 [1/A^(2)]
- M_theta_sph = 0.0 [deg]
- M_phi_sph = 0.0 [deg]
- M0_sld_solv = 0.0 [1/A^(2)]
- M_theta_solv = 0.0 [deg]
- M_phi_solv = 0.0 [deg]
- Up_frac_i = 0.5 [u/(u+d)]
- Up_frac_f = 0.5 [u/(u+d)]
- Up_theta = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.SphereModel.
create_SphereModel
()[source] Create a model instance
sas.models.SphereSLDModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/spheresld.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.SphereSLDModel.
SphereSLDModel
(multfactor=1)[source] Bases:
CSphereSLDModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a SphereSLDModel model. This file was auto-generated from src/sas/models/include/spheresld.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- n_shells = 1.0
- scale = 1.0
- thick_inter0 = 50.0 [A]
- func_inter0 = 0.0
- sld_core0 = 2.07e-06 [1/A^(2)]
- sld_solv = 1e-06 [1/A^(2)]
- background = 0.0
- sld_flat1 = 4e-06 [1/A^(2)]
- sld_flat2 = 3.5e-06 [1/A^(2)]
- sld_flat3 = 4e-06 [1/A^(2)]
- sld_flat4 = 3.5e-06 [1/A^(2)]
- sld_flat5 = 4e-06 [1/A^(2)]
- sld_flat6 = 3.5e-06 [1/A^(2)]
- sld_flat7 = 4e-06 [1/A^(2)]
- sld_flat8 = 3.5e-06 [1/A^(2)]
- sld_flat9 = 4e-06 [1/A^(2)]
- sld_flat10 = 3.5e-06 [1/A^(2)]
- thick_inter1 = 50.0 [A]
- thick_inter2 = 50.0 [A]
- thick_inter3 = 50.0 [A]
- thick_inter4 = 50.0 [A]
- thick_inter5 = 50.0 [A]
- thick_inter6 = 50.0 [A]
- thick_inter7 = 50.0 [A]
- thick_inter8 = 50.0 [A]
- thick_inter9 = 50.0 [A]
- thick_inter10 = 50.0 [A]
- thick_flat1 = 100.0 [A]
- thick_flat2 = 100.0 [A]
- thick_flat3 = 100.0 [A]
- thick_flat4 = 100.0 [A]
- thick_flat5 = 100.0 [A]
- thick_flat6 = 100.0 [A]
- thick_flat7 = 100.0 [A]
- thick_flat8 = 100.0 [A]
- thick_flat9 = 100.0 [A]
- thick_flat10 = 100.0 [A]
- func_inter1 = 0.0
- func_inter2 = 0.0
- func_inter3 = 0.0
- func_inter4 = 0.0
- func_inter5 = 0.0
- func_inter6 = 0.0
- func_inter7 = 0.0
- func_inter8 = 0.0
- func_inter9 = 0.0
- func_inter10 = 0.0
- nu_inter1 = 2.5
- nu_inter2 = 2.5
- nu_inter3 = 2.5
- nu_inter4 = 2.5
- nu_inter5 = 2.5
- nu_inter6 = 2.5
- nu_inter7 = 2.5
- nu_inter8 = 2.5
- nu_inter9 = 2.5
- nu_inter10 = 2.5
- npts_inter = 35.0
- nu_inter0 = 2.5
- rad_core0 = 50.0 [A]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.SphereSLDModel.
create_SphereSLDModel
()[source] Create a model instance
sas.models.SphericalSLDModel module
Spherical SLD model
-
class
sas.models.SphericalSLDModel.
SphericalSLDModel
(multfactor=1)[source] Bases:
sas.models.BaseComponent.BaseComponent
This multi-model is based on Parratt formalism and provides the capability of changing the number of layers between 0 and 10.
-
calculate_ER
()[source]
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
: param x: input q[], or [qx[], qy[]] : return: scattering function P(q[])
-
getProfile
()[source] Get SLD profile
- : return: (z, beta) where z is a list of depth of the transition points
- beta is a list of the corresponding SLD values
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model
: param x: input q-value (float or [float, float] as [qx, qy]) : return: scattering function value
-
setParam
(name, value)[source] Set the value of a model parameter
: param name: name of the parameter : param value: value of the parameter
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
: param parameter: name of the parameter [string] :dispersion: dispersion object of type DispersionModel
-
sas.models.SquareWellStructure module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/SquareWell.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.SquareWellStructure.
SquareWellStructure
(multfactor=1)[source] Bases:
CSquareWellStructure
,sas.models.BaseComponent.BaseComponent
Class that evaluates a SquareWellStructure model. This file was auto-generated from src/sas/models/include/SquareWell.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- effect_radius = 50.0 [A]
- volfraction = 0.04
- welldepth = 1.5 [kT]
- wellwidth = 1.2
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.SquareWellStructure.
create_SquareWellStructure
()[source] Create a model instance
sas.models.StackedDisksModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/stacked_disks.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.StackedDisksModel.
StackedDisksModel
(multfactor=1)[source] Bases:
CStackedDisksModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a StackedDisksModel model. This file was auto-generated from src/sas/models/include/stacked_disks.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 0.01
- core_thick = 10.0 [A]
- radius = 3000.0 [A]
- layer_thick = 15.0 [A]
- core_sld = 4e-06 [1/A^(2)]
- layer_sld = -4e-07 [1/A^(2)]
- solvent_sld = 5e-06 [1/A^(2)]
- n_stacking = 1.0
- sigma_d = 0.0
- background = 0.001 [1/cm]
- axis_theta = 0.0 [rad]
- axis_phi = 0.0 [rad]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.StackedDisksModel.
create_StackedDisksModel
()[source] Create a model instance
sas.models.StarPolymer module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/starpolymer.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.StarPolymer.
StarPolymer
(multfactor=1)[source] Bases:
CStarPolymer
,sas.models.BaseComponent.BaseComponent
Class that evaluates a StarPolymer model. This file was auto-generated from src/sas/models/include/starpolymer.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- arms = 3.0
- R2 = 100.0 [A]
- scale = 1.0
- background = 0.0 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.StarPolymer.
create_StarPolymer
()[source] Create a model instance
sas.models.StickyHSStructure module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/StickyHS.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.StickyHSStructure.
StickyHSStructure
(multfactor=1)[source] Bases:
CStickyHSStructure
,sas.models.BaseComponent.BaseComponent
Class that evaluates a StickyHSStructure model. This file was auto-generated from src/sas/models/include/StickyHS.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- effect_radius = 50.0 [A]
- volfraction = 0.1
- perturb = 0.05
- stickiness = 0.2
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.StickyHSStructure.
create_StickyHSStructure
()[source] Create a model instance
sas.models.SubComponent module
Provide base functionality for all model components @author: Mathieu Doucet / UTK @contact: mathieu.doucet@nist.gov
-
class
sas.models.SubComponent.
SubComponent
(base=None, other=None)[source] Bases:
sas.models.BaseComponent.BaseComponent
Basic model component for Subtraction Provides basic arithmetics
-
getParam
(name)[source] Set the value of a model parameter @param name: name of the parameter @return: value of the parameter
-
getParamList
()[source] Return a list of all available parameters for the model
-
run
(x=0)[source] Evaluate each part of the component and sum the results @param x: input parameter @return: value of the model at x
-
runXY
(x=0)[source] Evaluate each part of the component and sum the results @param x: input parameter @return: value of the model at x
-
setParam
(name, value)[source] Set the value of a model parameter @param name: name of parameter to set @param value: value to give the paramter
-
sas.models.SurfaceFractalModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/surfacefractal.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.SurfaceFractalModel.
SurfaceFractalModel
(multfactor=1)[source] Bases:
CSurfaceFractalModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a SurfaceFractalModel model. This file was auto-generated from src/sas/models/include/surfacefractal.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- radius = 10.0 [A]
- surface_dim = 2.0
- co_length = 500.0 [A]
- background = 0.0
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.SurfaceFractalModel.
create_SurfaceFractalModel
()[source] Create a model instance
sas.models.TeubnerStreyModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/teubner_strey.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.TeubnerStreyModel.
TeubnerStreyModel
(multfactor=1)[source] Bases:
CTeubnerStreyModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a TeubnerStreyModel model. This file was auto-generated from src/sas/models/include/teubner_strey.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 0.1
- c1 = -30.0
- c2 = 5000.0
- background = 0.0
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.TeubnerStreyModel.
create_TeubnerStreyModel
()[source] Create a model instance
sas.models.TriaxialEllipsoidModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/triaxial_ellipsoid.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.TriaxialEllipsoidModel.
TriaxialEllipsoidModel
(multfactor=1)[source] Bases:
CTriaxialEllipsoidModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a TriaxialEllipsoidModel model. This file was auto-generated from src/sas/models/include/triaxial_ellipsoid.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- semi_axisA = 35.0 [A]
- semi_axisB = 100.0 [A]
- semi_axisC = 400.0 [A]
- sldEll = 1e-06 [1/A^(2)]
- sldSolv = 6.3e-06 [1/A^(2)]
- background = 0.0 [1/cm]
- axis_theta = 57.325 [deg]
- axis_phi = 57.325 [deg]
- axis_psi = 0.0 [deg]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.TriaxialEllipsoidModel.
create_TriaxialEllipsoidModel
()[source] Create a model instance
sas.models.TwoLorentzianModel module
TwoLorentzianModel function as a BaseComponent model
-
class
sas.models.TwoLorentzianModel.
TwoLorentzianModel
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a TwoLorentzianModel. I(q) = II(q) = scale_1/(1.0 + pow((q*length_1),exponent_1)) + scale_2/(1.0 + pow((q*length_2),exponent_2) )+ background
-
run
(x=0.0)[source] Evaluate the model
param x: input q-value (float or [float, float] as [r, theta]) return: (scattering value)
-
runXY
(x=0.0)[source] Evaluate the model
param x: input q-value (float or [float, float] as [qx, qy]) return: scattering value
-
sas.models.TwoPowerLawModel module
TwoPowerLaw function as a BaseComponent model
Calculate:
I(q) = A pow(qval,-m1) for q<=qc
I(q) = scale pow(qval,-m2) for q>qc
-
class
sas.models.TwoPowerLawModel.
TwoPowerLawModel
[source] Bases:
sas.models.BaseComponent.BaseComponent
Class that evaluates a TwoPowerLawModel.
Calculate:
I(q) = coef_A pow(qval,-power1) for q<=qc I(q) = C pow(qval,-power2) for q>qc
where C=coef_A pow(qc,-power1)/pow(qc,-power2).
List of default parameters:
- coef_A = coefficient
- power1 = (-) Power @ low Q
- power2 = (-) Power @ high Q
- qc = crossover Q-value
- background = incoherent background
-
run
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [r, theta]) @return: (guinier value)
-
runXY
(x=0.0)[source] Evaluate the model @param x: input q-value (float or [float, float] as [qx, qy]) @return: guinier value
sas.models.TwoYukawaModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/TwoYukawa.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.TwoYukawaModel.
TwoYukawaModel
(multfactor=1)[source] Bases:
CTwoYukawaModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a TwoYukawaModel model. This file was auto-generated from src/sas/models/include/TwoYukawa.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- volfraction = 0.2
- effect_radius = 50.0 [A]
- scale_K1 = 6.0
- decayConst_Z1 = 10.0
- scale_K2 = -1.0
- decayConst_Z2 = 2.0
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.TwoYukawaModel.
create_TwoYukawaModel
()[source] Create a model instance
sas.models.UnifiedPowerRgModel module
-
class
sas.models.UnifiedPowerRgModel.
UnifiedPowerRgModel
(multfactor=1)[source] Bases:
sas.models.BaseComponent.BaseComponent
This model is based on Exponential/Power-law fit method developed by G. Beaucage
-
calculate_ER
()[source]
-
getProfile
()[source] Get SLD profile
: return: None, No SLD profile supporting for this model
-
run
(x=0.0)[source] Evaluate the model
: param x: input q-value (float or [float, float] as [r, theta]) : return: (DAB value)
-
runXY
(x=0.0)[source] Evaluate the model
: param x: input q-value (float or [float, float] as [qx, qy]) : return: DAB value
-
setParam
(name, value)[source] Set the value of a model parameter
: param name: name of the parameter : param value: value of the parameter
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
: param parameter: name of the parameter [string] :dispersion: dispersion object of type DispersionModel
-
sas.models.VesicleModel module
Provide functionality for a C extension model
Warning
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src/sas/models/include/vesicle.h AND RE-RUN THE GENERATOR SCRIPT
-
class
sas.models.VesicleModel.
VesicleModel
(multfactor=1)[source] Bases:
CVesicleModel
,sas.models.BaseComponent.BaseComponent
Class that evaluates a VesicleModel model. This file was auto-generated from src/sas/models/include/vesicle.h. Refer to that file and the structure it contains for details of the model.
List of default parameters:
- scale = 1.0
- radius = 100.0 [A]
- thickness = 30.0 [A]
- solv_sld = 6.36e-06 [1/A^(2)]
- shell_sld = 5e-07 [1/A^(2)]
- background = 0.0 [1/cm]
-
calculate_ER
()[source] Calculate the effective radius for P(q)*S(q)
Returns: the value of the effective radius
-
calculate_VR
()[source] Calculate the volf ratio for P(q)*S(q)
Returns: the value of the volf ratio
-
clone
()[source] Return a identical copy of self
-
evalDistribution
(x)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input q, or [q,phi] Returns: scattering function P(q)
-
runXY
(x=0.0)[source] Evaluate the model in cartesian coordinates
Parameters: x – input q, or [qx, qy] Returns: scattering function P(q)
-
set_dispersion
(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: - parameter – name of the parameter [string]
- dispersion – dispersion object of type DispersionModel
-
sas.models.VesicleModel.
create_VesicleModel
()[source] Create a model instance
sas.models.dispersion_models module
Class definitions for python dispersion model for model parameters. These classes are bridges to the C++ dispersion object.
The ArrayDispersion class takes in numpy arrays only.
Usage: These classes can be used to set the dispersion model of a SAS model parameter:
cyl = CylinderModel() cyl.set_dispersion(‘radius’, GaussianDispersion())
After the dispersion model is set, you can access it’s parameter through the dispersion dictionary:
cyl.dispersion[‘radius’][‘width’] = 5.0
TODO: | For backward compatibility, the model parameters are still kept in a dictionary. The next iteration of refactoring work should involve moving away from value-based parameters to object-based parameter. We want to store parameters as objects so that we can unify the ‘params’ and ‘dispersion’ dictionaries into a single dictionary of parameter objects that hold the complete information about the parameter (units, limits, dispersion model, etc...). |
---|
-
class
sas.models.dispersion_models.
ArrayDispersion
[source] Bases:
sas.models.dispersion_models.DispersionModel
Python bridge class for a dispersion model based on arrays. The user has to set a weight distribution that will be used in the averaging the model parameter it is applied to.
-
set_weights
(values, weights)[source] Set the weights of an array dispersion Only accept numpy arrays.
Parameters: - values – numpy array of values
- weights – numpy array of weights for each value entry
-
-
class
sas.models.dispersion_models.
DispersionModel
[source] Python bridge class for a basic dispersion model class with a constant parameter value distribution
-
set_weights
(values, weights)[source] Set the weights of an array dispersion
-
-
class
sas.models.dispersion_models.
GaussianDispersion
[source] Bases:
sas.models.dispersion_models.DispersionModel
Python bridge class for a dispersion model based on a Gaussian distribution.
-
set_weights
(values, weights)[source] Set the weights of an array dispersion
-
-
class
sas.models.dispersion_models.
LogNormalDispersion
[source] Bases:
sas.models.dispersion_models.DispersionModel
Python bridge class for a dispersion model based on a Log Normal distribution.
-
set_weights
(values, weights)[source] Set the weights of an array dispersion
-
-
class
sas.models.dispersion_models.
RectangleDispersion
[source] Bases:
sas.models.dispersion_models.DispersionModel
Python bridge class for a dispersion model based on a Gaussian distribution.
-
set_weights
(values, weights)[source] Set the weights of an array dispersion
-
-
class
sas.models.dispersion_models.
SchulzDispersion
[source] Bases:
sas.models.dispersion_models.DispersionModel
Python bridge class for a dispersion model based on a Schulz distribution.
-
set_weights
(values, weights)[source] Set the weights of an array dispersion
-
sas.models.pluginmodel module
-
class
sas.models.pluginmodel.
Model1DPlugin
(name='Plugin Model')[source] Bases:
sas.models.BaseComponent.BaseComponent
-
function
(x)[source] Function to be implemented by the plug-in writer
-
run
(x=0.0)[source] Evaluate the model
Parameters: x – input x, or [x, phi] [radian] Returns: function value
-
runXY
(x=0.0)[source] Evaluate the model
Parameters: x – input x, or [x, y] Returns: function value
-
set_details
()[source] Set default details
-
sas.models.qsmearing module
Handle Q smearing
-
class
sas.models.qsmearing.
PySmear
(resolution, model)[source] Bases:
object
Wrapper for pure python sasmodels resolution functions.
-
apply
(iq_in, first_bin=0, last_bin=None)[source] Apply the resolution function to the data.
Note that this is called with iq_in matching data.x, but with iq_in[first_bin:last_bin] set to theory values for these bins, and the remainder left undefined. The first_bin, last_bin values should be those returned from get_bin_range.
The returned value is of the same length as iq_in, with the range first_bin:last_bin set to the resolution smeared values.
-
get_bin_range
(q_min=None, q_max=None)[source] For a given q_min, q_max, find the corresponding indices in the data.
Returns first, last.
Note that these are indexes into q from the data, not the q_calc needed by the resolution function. Note also that these are the indices, not the range limits. That is, the complete range will be q[first:last+1].
-
-
class
sas.models.qsmearing.
QSmearer
(data1D, model=None)[source] Bases:
sas.models.qsmearing._QSmearer
Adaptor for Gaussian Q smearing class and SAS data
-
class
sas.models.qsmearing.
SlitSmearer
(data1D, model=None)[source] Bases:
sas.models.qsmearing._SlitSmearer
Adaptor for slit smearing class and SAS data
-
sas.models.qsmearing.
get_qextrapolate
(width, data_x)[source] Make fake data_x points extrapolated outside of the data_x points
Parameters: - width – array of std of q resolution
- Data1D.x – Data1D.x array
Return new_width, data_x_ext: extrapolated width array and x array
Assumption1: data_x is ordered from lower q to higher q
Assumption2: len(data) = len(width)
Assumption3: the distance between the data points is more compact than the size of width
Todo1: Make sure that the assumptions are correct for Data1D
Todo2: This fixes the edge problem in Qsmearer but still needs to make smearer interface
-
sas.models.qsmearing.
pinhole_smear
(data, model=None)[source]
-
sas.models.qsmearing.
slit_smear
(data, model=None)[source]
-
sas.models.qsmearing.
smear_selection
(data1D, model=None)[source] Creates the right type of smearer according to the data.
The canSAS format has a rule that either slit smearing data OR resolution smearing data is available.
For the present purpose, we choose the one that has none-zero data. If both slit and resolution smearing arrays are filled with good data (which should not happen), then we choose the resolution smearing data.
Parameters: - data1D – Data1D object
- model – sas.model instance
sas.models.resolution module
Define the resolution functions for the data.
This defines classes for 1D and 2D resolution calculations.
-
class
sas.models.resolution.
IgorComparisonTest
(methodName='runTest')[source] Bases:
unittest.case.TestCase
-
Iq_sphere
(pars, resolution)[source]
-
compare
(q, output, answer, tolerance)[source]
-
setUp
()[source]
-
test_ellipsoid
()[source] Compare romberg integration for ellipsoid model.
-
test_perfect
()[source] Compare sphere model with NIST Igor SANS, no resolution smearing.
-
test_pinhole
()[source] Compare pinhole resolution smearing with NIST Igor SANS
-
test_pinhole_romberg
()[source] Compare pinhole resolution smearing with romberg integration result.
-
test_pinhole_sparse
(*args, **kwargs)[source] Compare pinhole resolution smearing with NIST Igor SANS on sparse data
-
test_slit
()[source] Compare slit resolution smearing with NIST Igor SANS
-
test_slit_romberg
()[source] Compare slit resolution smearing with romberg integration result.
-
-
class
sas.models.resolution.
Perfect1D
(q)[source] Bases:
sas.models.resolution.Resolution
Resolution function to use when there is no actual resolution smearing to be applied. It has the same interface as the other resolution functions, but returns the identity function.
-
apply
(theory)[source]
-
-
class
sas.models.resolution.
Pinhole1D
(q, q_width, q_calc=None, nsigma=3)[source] Bases:
sas.models.resolution.Resolution
Pinhole aperture with q-dependent gaussian resolution.
q points at which the data is measured.
q_width gaussian 1-sigma resolution at each data point.
q_calc is the list of points to calculate, or None if this should be estimated from the q and q_width.
-
apply
(theory)[source]
-
-
class
sas.models.resolution.
Resolution
[source] Bases:
object
Abstract base class defining a 1D resolution function.
q is the set of q values at which the data is measured.
q_calc is the set of q values at which the theory needs to be evaluated. This may extend and interpolate the q values.
apply is the method to call with I(q_calc) to compute the resolution smeared theory I(q).
-
apply
(theory)[source] Smear theory by the resolution function, returning Iq.
-
q
= None
-
q_calc
= None
-
-
class
sas.models.resolution.
ResolutionTest
(methodName='runTest')[source] Bases:
unittest.case.TestCase
-
Iq
(q)[source] Linear function for resolution unit test
-
setUp
()[source]
-
test_perfect
()[source] Perfect resolution and no smearing.
-
test_pinhole
()[source] Pinhole smearing with dQ = 0.001 [Note: not dQ/Q = 0.001]
-
test_pinhole_zero
()[source] Pinhole smearing with perfect resolution
-
test_slit_both_high
(*args, **kwargs)[source] Slit smearing with width < 100*height.
-
test_slit_both_wide
(*args, **kwargs)[source] Slit smearing with width > 100*height.
-
test_slit_high
(*args, **kwargs)[source] Slit smearing with height 0.005
-
test_slit_wide
(*args, **kwargs)[source] Slit smearing with width 0.0002
-
test_slit_zero
()[source] Slit smearing with perfect resolution.
-
-
class
sas.models.resolution.
Slit1D
(q, width, height=0.0, q_calc=None)[source] Bases:
sas.models.resolution.Resolution
Slit aperture with a complicated resolution function.
q points at which the data is measured.
qx_width slit width
qy_height slit height
q_calc is the list of points to calculate, or None if this should be estimated from the q and q_width.
The weight_matrix is computed by
slit1d_resolution()
-
apply
(theory)[source]
-
-
sas.models.resolution.
apply_resolution_matrix
(weight_matrix, theory)[source] Apply the resolution weight matrix to the computed theory function.
-
sas.models.resolution.
bin_edges
(x)[source] Determine bin edges from bin centers, assuming that edges are centered between the bins.
Note: this uses the arithmetic mean, which may not be appropriate for log-scaled data.
-
sas.models.resolution.
demo
()[source]
-
sas.models.resolution.
demo_pinhole_1d
()[source]
-
sas.models.resolution.
demo_slit_1d
()[source]
-
sas.models.resolution.
eval_form
(q, form, pars)[source]
-
sas.models.resolution.
gaussian
(q, q0, dq)[source]
-
sas.models.resolution.
geometric_extrapolation
(q, q_min, q_max, points_per_decade=None)[source] Extrapolate q to [q_min, q_max] using geometric steps, with the average geometric step size in q as the step size.
if q_min is zero or less then q[0]/10 is used instead.
points_per_decade sets the ratio between consecutive steps such that there will be \(n\) points used for every factor of 10 increase in q.
If points_per_decade is not given, it will be estimated as follows. Starting at \(q_1\) and stepping geometrically by \(\Delta q\) to \(q_n\) in \(n\) points gives a geometric average of:
\[\log \Delta q = (\log q_n - log q_1) / (n - 1)\]From this we can compute the number of steps required to extend \(q\) from \(q_n\) to \(q_\text{max}\) by \(\Delta q\) as:
\[n_\text{extend} = (\log q_\text{max} - \log q_n) / \log \Delta q\]Substituting:
-
sas.models.resolution.
interpolate
(q, max_step)[source] Returns q_calc with points spaced at most max_step apart.
-
sas.models.resolution.
linear_extrapolation
(q, q_min, q_max)[source] Extrapolate q out to [q_min, q_max] using the step size in q as a guide. Extrapolation below uses about the same size as the first interval. Extrapolation above uses about the same size as the final interval.
if q_min is zero or less then q[0]/10 is used instead.
-
sas.models.resolution.
main
()[source] Run tests given is sys.argv.
Returns 0 if success or 1 if any tests fail.
-
sas.models.resolution.
pinhole_extend_q
(q, q_width, nsigma=3)[source] Given q and q_width, find a set of sampling points q_calc so that each point I(q) has sufficient support from the underlying function.
-
sas.models.resolution.
pinhole_resolution
(q_calc, q, q_width)[source] Compute the convolution matrix W for pinhole resolution 1-D data.
Each row W[i] determines the normalized weight that the corresponding points q_calc contribute to the resolution smeared point q[i]. Given W, the resolution smearing can be computed using dot(W,q).
q_calc must be increasing. q_width must be greater than zero.
-
sas.models.resolution.
romberg_pinhole_1d
(q, q_width, form, pars, nsigma=5)[source] Romberg integration for pinhole resolution.
This is an adaptive integration technique. It is called with settings that make it slow to evaluate but give it good accuracy.
-
sas.models.resolution.
romberg_slit_1d
(q, width, height, form, pars)[source] Romberg integration for slit resolution.
This is an adaptive integration technique. It is called with settings that make it slow to evaluate but give it good accuracy.
-
sas.models.resolution.
slit_extend_q
(q, width, height)[source] Given q, width and height, find a set of sampling points q_calc so that each point I(q) has sufficient support from the underlying function.
-
sas.models.resolution.
slit_resolution
(q_calc, q, width, height, n_height=30)[source] Build a weight matrix to compute I_s(q) from I(q_calc), given \(q_\perp\) = width and \(q_\parallel\) = height. n_height is is the number of steps to use in the integration over \(q_\parallel\) when both \(q_\perp\) and \(q_\parallel\) are non-zero.
Each \(q\) can have an independent width and height value even though current instruments use the same slit setting for all measured points.
If slit height is large relative to width, use:
\[I_s(q_i) = \frac{1}{\Delta q_\perp} \int_0^{\Delta q_\perp} I(\sqrt{q_i^2 + q_\perp^2} dq_\perp\]If slit width is large relative to height, use:
\[I_s(q_i) = \frac{1}{2 \Delta q_\parallel} \int_{-\Delta q_\parallel}^{\Delta q_\parallel} I(|q_i + q_\parallel|) dq_\parallel\]For a mixture of slit width and height use:
\[I_s(q_i) = \frac{1}{2 \Delta q_\parallel \Delta q_\perp} \int_{-\Delta q_\parallel)^{\Delta q_parallel} \int_0^[\Delta q_\perp} I(\sqrt{(q_i + q_\parallel)^2 + q_\perp^2}) dq_\perp dq_\parallel\]We are using the mid-point integration rule to assign weights to each element of a weight matrix \(W\) so that
\[I_s(q) = W I(q_\text{calc})\]If q_calc is at the mid-point, we can infer the bin edges from the pairwise averages of q_calc, adding the missing edges before q_calc[0] and after q_calc[-1].
For \(q_\parallel = 0\), the smeared value can be computed numerically using the \(u\) substitution
\[u_j = \sqrt{q_j^2 - q^2}\]This gives
\[I_s(q) \approx \sum_j I(u_j) \Delta u_j\]where \(I(u_j)\) is the value at the mid-point, and \(\Delta u_j\) is the difference between consecutive edges which have been first converted to \(u\). Only \(u_j \in [0, \Delta q_\perp]\) are used, which corresponds to \(q_j \in [q, \sqrt{q^2 + \Delta q_\perp}]\), so
\[W_{ij} = \frac{1}{\Delta q_\perp} \Delta u_j = \frac{1}{\Delta q_\perp} \sqrt{q_{j+1}^2 - q_i^2} - \sqrt{q_j^2 - q_i^2} \text{if} q_j \in [q_i, \sqrt{q_i^2 + q_\perp^2}]\]where \(I_s(q_i)\) is the theory function being computed and \(q_j\) are the mid-points between the calculated values in q_calc. We tweak the edges of the initial and final intervals so that they lie on integration limits.
(To be precise, the transformed midpoint \(u(q_j)\) is not necessarily the midpoint of the edges \(u((q_{j-1}+q_j)/2)\) and \(u((q_j + q_{j+1})/2)\), but it is at least in the interval, so the approximation is going to be a little better than the left or right Riemann sum, and should be good enough for our purposes.)
For \(q_\perp = 0\), the \(u\) substitution is simpler:
\[u_j = |q_j - q|\]so
\[W_ij = \frac{1}{2 \Delta q_\parallel} \Delta u_j = \frac{1}{2 \Delta q_\parallel} (q_{j+1} - q_j) \text{if} q_j \in [q-\Delta q_\parallel, q+\Delta q_\parallel]\]However, we need to support cases were \(u_j < 0\), which means using \(2 (q_{j+1} - q_j)\) when \(q_j \in [0, q_\parallel-q_i]\). This is not an issue for \(q_i > q_\parallel\).
For bot \(q_\perp > 0\) and \(q_\parallel > 0\) we perform a 2 dimensional integration with
\[u_jk = \sqrt{q_j^2 - (q + (k\Delta q_\parallel/L))^2} \text{for} k = -L \ldots L\]for \(L\) = n_height. This gives
\[W_{ij} = \frac{1}{2 \Delta q_\perp q_\parallel} \sum_{k=-L}^L \Delta u_jk (\frac{\Delta q_\parallel}{2 L + 1}\]
sas.models.smearing_2d module
#This software was developed by the University of Tennessee as part of the #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) #project funded by the US National Science Foundation. #See the license text in license.txt
-
class
sas.models.smearing_2d.
Smearer2D
(data=None, model=None, index=None, limit=3.0, accuracy='Low', coords='polar', engine='c')[source] Gaussian Q smearing class for SAS 2d data
-
get_data
()[source] Get qx_data, qy_data, dqx_data,dqy_data, and calculate phi_data=arctan(qx_data/qy_data)
-
get_value
()[source] Over sampling of r_nbins times phi_nbins, calculate Gaussian weights, then find smeared intensity
-
set_accuracy
(accuracy='Low')[source] Set accuracy.
Parameters: accuracy – string
-
set_data
(data=None)[source] Set data.
Parameters: data – DataLoader.Data_info type
-
set_index
(index=None)[source] Set index.
Parameters: index – 1d arrays
-
set_model
(model=None)[source] Set model.
Parameters: model – sas.models instance
-
set_smearer
(smearer=True)[source] Set whether or not smearer will be used
Parameters: smearer – smear object
-