Source code for sas.models.TwoPowerLawModel
#!/usr/bin/env python
"""
TwoPowerLaw function as a BaseComponent model
Calculate::
I(q) = A pow(qval,-m1) for q<=qc
I(q) = scale pow(qval,-m2) for q>qc
"""
from sas.models.BaseComponent import BaseComponent
from numpy import power
import math
[docs]class TwoPowerLawModel(BaseComponent):
"""
Class that evaluates a TwoPowerLawModel.
Calculate::
I(q) = coef_A pow(qval,-power1) for q<=qc
I(q) = C pow(qval,-power2) for q>qc
where C=coef_A pow(qc,-power1)/pow(qc,-power2).
List of default parameters:
* coef_A = coefficient
* power1 = (-) Power @ low Q
* power2 = (-) Power @ high Q
* qc = crossover Q-value
* background = incoherent background
"""
def __init__(self):
""" Initialization """
# Initialize BaseComponent first, then sphere
BaseComponent.__init__(self)
## Name of the model
self.name = "TwoPowerLaw"
self.description="""I(q) = coef_A*pow(qval,-1.0*power1) for q<=qc
=C*pow(qval,-1.0*power2) for q>qc
where C=coef_A*pow(qc,-1.0*power1)/pow(qc,-1.0*power2).
List of default parameters:
coef_A = coefficient
power1 = (-) Power @ low Q
power2 = (-) Power @ high Q
qc = crossover Q-value
background = incoherent background
"""
## Define parameters
self.params = {}
self.params['coef_A'] = 1.0
self.params['power1'] = 1.0
self.params['power2'] = 4.0
self.params['qc'] = 0.04
self.params['background'] = 0.0
## Parameter details [units, min, max]
self.details = {}
self.details['coef_A'] = ['', None, None]
self.details['power1'] = ['', None, None]
self.details['power2'] = ['', None, None]
self.details['qc'] = ['1/A', None, None]
self.details['background'] = ['[1/cm]', None, None]
#list of parameter that cannot be fitted
self.fixed= []
def _twopowerlaw(self, x):
"""
Model definition
"""
qc= self.params['qc']
if(x<=qc):
inten = self.params['coef_A']*power(x,-1.0*self.params['power1'])
else:
scale = self.params['coef_A']*power(qc,-1.0*self.params['power1']) \
/ power(qc,-1.0*self.params['power2'])
inten = scale*power(x,-1.0*self.params['power2'])
inten += self.params['background']
return inten
[docs] def run(self, x = 0.0):
""" Evaluate the model
@param x: input q-value (float or [float, float] as [r, theta])
@return: (guinier value)
"""
if x.__class__.__name__ == 'list':
return self._twopowerlaw(x[0])
elif x.__class__.__name__ == 'tuple':
raise ValueError, "Tuples are not allowed as input to BaseComponent models"
else:
return self._twopowerlaw(x)
[docs] def runXY(self, x = 0.0):
""" Evaluate the model
@param x: input q-value (float or [float, float] as [qx, qy])
@return: guinier value
"""
if x.__class__.__name__ == 'list':
q = math.sqrt(x[0]**2 + x[1]**2)
return self._twopowerlaw(q)
elif x.__class__.__name__ == 'tuple':
raise ValueError, "Tuples are not allowed as input to BaseComponent models"
else:
return self._twopowerlaw(x)