Source code for sas.models.EllipsoidModel

##############################################################################
# This software was developed by the University of Tennessee as part of the
# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
# project funded by the US National Science Foundation.
#
# If you use DANSE applications to do scientific research that leads to
# publication, we ask that you acknowledge the use of the software with the
# following sentence:
#
# This work benefited from DANSE software developed under NSF award DMR-0520547
#
# Copyright 2008-2011, University of Tennessee
##############################################################################

"""
Provide functionality for a C extension model

.. WARNING::
   THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
   DO NOT MODIFY THIS FILE, MODIFY
   src/sas/models/include/ellipsoid.h
   AND RE-RUN THE GENERATOR SCRIPT
"""

from sas.models.BaseComponent import BaseComponent
from sas.models.sas_extension.c_models import CEllipsoidModel
from numpy import inf

[docs]def create_EllipsoidModel(): """ Create a model instance """ obj = EllipsoidModel() # CEllipsoidModel.__init__(obj) is called by # the EllipsoidModel constructor return obj
[docs]class EllipsoidModel(CEllipsoidModel, BaseComponent): """ Class that evaluates a EllipsoidModel model. This file was auto-generated from src/sas/models/include/ellipsoid.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * radius_a = 20.0 [A] * scale = 1.0 * radius_b = 400.0 [A] * sldEll = 4e-06 [1/A^(2)] * sldSolv = 1e-06 [1/A^(2)] * background = 0.0 [1/cm] * axis_theta = 90.0 [deg] * axis_phi = 0.0 [deg] """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CEllipsoidModel.__init__, (self,)) CEllipsoidModel.__init__(self) self.is_multifunc = False ## Name of the model self.name = "EllipsoidModel" ## Model description self.description = """ "P(q.alpha)= scale*f(q)^(2)+ bkg, where f(q)= 3*(sld_ell - sld_solvent)*V*[sin(q*r(Ra,Rb,alpha)) -q*r*cos(qr(Ra,Rb,alpha))] /[qr(Ra,Rb,alpha)]^(3)" r(Ra,Rb,alpha)= [Rb^(2)*(sin(alpha))^(2) + Ra^(2)*(cos(alpha))^(2)]^(1/2) scatter_sld: SLD of the scatter solvent_sld: SLD of the solvent sldEll: SLD of ellipsoid sldSolv: SLD of solvent V: volune of the Eliipsoid Ra: radius along the rotation axis of the Ellipsoid Rb: radius perpendicular to the rotation axis of the ellipsoid """ ## Parameter details [units, min, max] self.details = {} self.details['radius_a'] = ['[A]', None, None] self.details['scale'] = ['', None, None] self.details['radius_b'] = ['[A]', None, None] self.details['sldEll'] = ['[1/A^(2)]', None, None] self.details['sldSolv'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['axis_theta'] = ['[deg]', None, None] self.details['axis_phi'] = ['[deg]', None, None] ## fittable parameters self.fixed = ['axis_phi.width', 'axis_theta.width', 'radius_a.width', 'radius_b.width', 'length.width', 'r_minor.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = ['axis_phi.width', 'axis_theta.width', 'axis_phi', 'axis_theta'] ## parameters with magnetism self.magnetic_params = [] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_EllipsoidModel, tuple(), state, None, None)
[docs] def clone(self): """ Return a identical copy of self """ return self._clone(EllipsoidModel())
[docs] def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CEllipsoidModel.run(self, x)
[docs] def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CEllipsoidModel.runXY(self, x)
[docs] def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CEllipsoidModel.evalDistribution(self, x)
[docs] def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CEllipsoidModel.calculate_ER(self)
[docs] def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CEllipsoidModel.calculate_VR(self)
[docs] def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CEllipsoidModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file