##############################################################################
# This software was developed by the University of Tennessee as part of the
# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
# project funded by the US National Science Foundation.
#
# If you use DANSE applications to do scientific research that leads to
# publication, we ask that you acknowledge the use of the software with the
# following sentence:
#
# This work benefited from DANSE software developed under NSF award DMR-0520547
#
# Copyright 2008-2011, University of Tennessee
##############################################################################
"""
Provide functionality for a C extension model
.. WARNING::
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
DO NOT MODIFY THIS FILE, MODIFY
src/sas/models/include/core_shell.h
AND RE-RUN THE GENERATOR SCRIPT
"""
from sas.models.BaseComponent import BaseComponent
from sas.models.sas_extension.c_models import CCoreShellModel
from numpy import inf
[docs]def create_CoreShellModel():
"""
Create a model instance
"""
obj = CoreShellModel()
# CCoreShellModel.__init__(obj) is called by
# the CoreShellModel constructor
return obj
[docs]class CoreShellModel(CCoreShellModel, BaseComponent):
"""
Class that evaluates a CoreShellModel model.
This file was auto-generated from src/sas/models/include/core_shell.h.
Refer to that file and the structure it contains
for details of the model.
List of default parameters:
* radius = 60.0 [A]
* scale = 1.0
* thickness = 10.0 [A]
* core_sld = 1e-06 [1/A^(2)]
* shell_sld = 2e-06 [1/A^(2)]
* solvent_sld = 3e-06 [1/A^(2)]
* background = 0.0 [1/cm]
* M0_sld_shell = 0.0 [1/A^(2)]
* M_theta_shell = 0.0 [deg]
* M_phi_shell = 0.0 [deg]
* M0_sld_core = 0.0 [1/A^(2)]
* M_theta_core = 0.0 [deg]
* M_phi_core = 0.0 [deg]
* M0_sld_solv = 0.0 [1/A^(2)]
* M_theta_solv = 0.0 [deg]
* M_phi_solv = 0.0 [deg]
* Up_frac_i = 0.5 [u/(u+d)]
* Up_frac_f = 0.5 [u/(u+d)]
* Up_theta = 0.0 [deg]
"""
def __init__(self, multfactor=1):
""" Initialization """
self.__dict__ = {}
# Initialize BaseComponent first, then sphere
BaseComponent.__init__(self)
#apply(CCoreShellModel.__init__, (self,))
CCoreShellModel.__init__(self)
self.is_multifunc = False
## Name of the model
self.name = "CoreShellModel"
## Model description
self.description = """
Form factor for a monodisperse spherical particle with particle
with a core-shell structure:
The form factor is normalized by the
total particle volume.
radius: core radius, thickness: shell thickness
Ref: Guinier, A. and G. Fournet,
John Wiley and Sons, New York, 1955.
"""
## Parameter details [units, min, max]
self.details = {}
self.details['radius'] = ['[A]', None, None]
self.details['scale'] = ['', None, None]
self.details['thickness'] = ['[A]', None, None]
self.details['core_sld'] = ['[1/A^(2)]', None, None]
self.details['shell_sld'] = ['[1/A^(2)]', None, None]
self.details['solvent_sld'] = ['[1/A^(2)]', None, None]
self.details['background'] = ['[1/cm]', None, None]
self.details['M0_sld_shell'] = ['[1/A^(2)]', None, None]
self.details['M_theta_shell'] = ['[deg]', None, None]
self.details['M_phi_shell'] = ['[deg]', None, None]
self.details['M0_sld_core'] = ['[1/A^(2)]', None, None]
self.details['M_theta_core'] = ['[deg]', None, None]
self.details['M_phi_core'] = ['[deg]', None, None]
self.details['M0_sld_solv'] = ['[1/A^(2)]', None, None]
self.details['M_theta_solv'] = ['[deg]', None, None]
self.details['M_phi_solv'] = ['[deg]', None, None]
self.details['Up_frac_i'] = ['[u/(u+d)]', None, None]
self.details['Up_frac_f'] = ['[u/(u+d)]', None, None]
self.details['Up_theta'] = ['[deg]', None, None]
## fittable parameters
self.fixed = ['thickness.width',
'radius.width']
## non-fittable parameters
self.non_fittable = []
## parameters with orientation
self.orientation_params = ['M0_sld_shell',
'M_theta_shell',
'M_phi_shell',
'M0_sld_core',
'M_theta_core',
'M_phi_core',
'M0_sld_solv',
'M_theta_solv',
'M_phi_solv',
'Up_frac_i',
'Up_frac_f',
'Up_theta']
## parameters with magnetism
self.magnetic_params = ['M0_sld_shell', 'M_theta_shell', 'M_phi_shell', 'M0_sld_core', 'M_theta_core', 'M_phi_core', 'M0_sld_solv', 'M_theta_solv', 'M_phi_solv', 'Up_frac_i', 'Up_frac_f', 'Up_theta']
self.category = None
self.multiplicity_info = None
def __setstate__(self, state):
"""
restore the state of a model from pickle
"""
self.__dict__, self.params, self.dispersion = state
def __reduce_ex__(self, proto):
"""
Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of
c model.
"""
state = (self.__dict__, self.params, self.dispersion)
return (create_CoreShellModel, tuple(), state, None, None)
[docs] def clone(self):
""" Return a identical copy of self """
return self._clone(CoreShellModel())
[docs] def run(self, x=0.0):
"""
Evaluate the model
:param x: input q, or [q,phi]
:return: scattering function P(q)
"""
return CCoreShellModel.run(self, x)
[docs] def runXY(self, x=0.0):
"""
Evaluate the model in cartesian coordinates
:param x: input q, or [qx, qy]
:return: scattering function P(q)
"""
return CCoreShellModel.runXY(self, x)
[docs] def evalDistribution(self, x):
"""
Evaluate the model in cartesian coordinates
:param x: input q[], or [qx[], qy[]]
:return: scattering function P(q[])
"""
return CCoreShellModel.evalDistribution(self, x)
[docs] def calculate_ER(self):
"""
Calculate the effective radius for P(q)*S(q)
:return: the value of the effective radius
"""
return CCoreShellModel.calculate_ER(self)
[docs] def calculate_VR(self):
"""
Calculate the volf ratio for P(q)*S(q)
:return: the value of the volf ratio
"""
return CCoreShellModel.calculate_VR(self)
[docs] def set_dispersion(self, parameter, dispersion):
"""
Set the dispersion object for a model parameter
:param parameter: name of the parameter [string]
:param dispersion: dispersion object of type DispersionModel
"""
return CCoreShellModel.set_dispersion(self,
parameter, dispersion.cdisp)
# End of file