"""
Handle Q smearing
"""
#####################################################################
#This software was developed by the University of Tennessee as part of the
#Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
#project funded by the US National Science Foundation.
#See the license text in license.txt
#copyright 2008, University of Tennessee
######################################################################
import numpy
import math
import logging
import sys
import sas.models.sas_extension.smearer as smearer
from sas.models.smearing_2d import Smearer2D
[docs]def smear_selection(data1D, model = None):
"""
Creates the right type of smearer according
to the data.
The canSAS format has a rule that either
slit smearing data OR resolution smearing data
is available.
For the present purpose, we choose the one that
has none-zero data. If both slit and resolution
smearing arrays are filled with good data
(which should not happen), then we choose the
resolution smearing data.
:param data1D: Data1D object
:param model: sas.model instance
"""
# Sanity check. If we are not dealing with a SAS Data1D
# object, just return None
if data1D.__class__.__name__ not in ['Data1D', 'Theory1D']:
if data1D == None:
return None
elif data1D.dqx_data == None or data1D.dqy_data == None:
return None
return Smearer2D(data1D)
if not hasattr(data1D, "dx") and not hasattr(data1D, "dxl")\
and not hasattr(data1D, "dxw"):
return None
# Look for resolution smearing data
_found_resolution = False
if data1D.dx is not None and len(data1D.dx) == len(data1D.x):
# Check that we have non-zero data
if data1D.dx[0] > 0.0:
_found_resolution = True
#print "_found_resolution",_found_resolution
#print "data1D.dx[0]",data1D.dx[0],data1D.dxl[0]
# If we found resolution smearing data, return a QSmearer
if _found_resolution == True:
return QSmearer(data1D, model)
#return pinhole_smear(data1D, model)
# Look for slit smearing data
_found_slit = False
if data1D.dxl is not None and len(data1D.dxl) == len(data1D.x) \
and data1D.dxw is not None and len(data1D.dxw) == len(data1D.x):
# Check that we have non-zero data
if data1D.dxl[0] > 0.0 or data1D.dxw[0] > 0.0:
_found_slit = True
# Sanity check: all data should be the same as a function of Q
for item in data1D.dxl:
if data1D.dxl[0] != item:
_found_resolution = False
break
for item in data1D.dxw:
if data1D.dxw[0] != item:
_found_resolution = False
break
# If we found slit smearing data, return a slit smearer
if _found_slit == True:
#return SlitSmearer(data1D, model)
return slit_smear(data1D, model)
return None
class _BaseSmearer(object):
"""
Base class for smearers
"""
def __init__(self):
self.nbins = 0
self.nbins_low = 0
self.nbins_high = 0
self._weights = None
## Internal flag to keep track of C++ smearer initialization
self._init_complete = False
self._smearer = None
self.model = None
self.min = None
self.max = None
self.qvalues = []
def __deepcopy__(self, memo=None):
"""
Return a valid copy of self.
Avoid copying the _smearer C object and force a matrix recompute
when the copy is used.
"""
result = _BaseSmearer()
result.nbins = self.nbins
return result
def _compute_matrix(self):
"""
Place holder for matrix computation
"""
return NotImplemented
def get_unsmeared_range(self, q_min=None, q_max=None):
"""
Place holder for method returning unsmeared range
"""
return NotImplemented
def get_bin_range(self, q_min=None, q_max=None):
"""
:param q_min: minimum q-value to smear
:param q_max: maximum q-value to smear
"""
# If this is the first time we call for smearing,
# initialize the C++ smearer object first
if not self._init_complete:
self._initialize_smearer()
if q_min == None:
q_min = self.min
if q_max == None:
q_max = self.max
_qmin_unsmeared, _qmax_unsmeared = self.get_unsmeared_range(q_min,
q_max)
_first_bin = None
_last_bin = None
#step = (self.max - self.min) / (self.nbins - 1.0)
# Find the first and last bin number in all extrapolated and real data
try:
for i in range(self.nbins):
q_i = smearer.get_q(self._smearer, i)
if (q_i >= _qmin_unsmeared) and (q_i <= _qmax_unsmeared):
# Identify first and last bin
if _first_bin is None:
_first_bin = i
else:
_last_bin = i
except:
msg = "_BaseSmearer.get_bin_range: "
msg += " error getting range\n %s" % sys.exc_value
raise RuntimeError, msg
# Find the first and last bin number only in the real data
_first_bin, _last_bin = self._get_unextrapolated_bin( \
_first_bin, _last_bin)
return _first_bin, _last_bin
def __call__(self, iq_in, first_bin = 0, last_bin = None):
"""
Perform smearing
"""
# If this is the first time we call for smearing,
# initialize the C++ smearer object first
if not self._init_complete:
self._initialize_smearer()
if last_bin is None or last_bin >= len(iq_in):
last_bin = len(iq_in) - 1
# Check that the first bin is positive
if first_bin < 0:
first_bin = 0
# With a model given, compute I for the extrapolated points and append
# to the iq_in
iq_in_temp = iq_in
if self.model != None:
temp_first, temp_last = self._get_extrapolated_bin( \
first_bin, last_bin)
if self.nbins_low > 0:
iq_in_low = self.model.evalDistribution( \
numpy.fabs(self.qvalues[0:self.nbins_low]))
iq_in_high = self.model.evalDistribution( \
self.qvalues[(len(self.qvalues) - \
self.nbins_high - 1):])
# Todo: find out who is sending iq[last_poin] = 0.
if iq_in[len(iq_in) - 1] == 0:
iq_in[len(iq_in) - 1] = iq_in_high[0]
# Append the extrapolated points to the data points
if self.nbins_low > 0:
iq_in_temp = numpy.append(iq_in_low, iq_in)
if self.nbins_high > 0:
iq_in_temp = numpy.append(iq_in_temp, iq_in_high[1:])
else:
temp_first = first_bin
temp_last = last_bin
#iq_in_temp = iq_in
# Sanity check
if len(iq_in_temp) != self.nbins:
msg = "Invalid I(q) vector: inconsistent array "
msg += " length %d != %s" % (len(iq_in_temp), str(self.nbins))
raise RuntimeError, msg
# Storage for smeared I(q)
iq_out = numpy.zeros(self.nbins)
smear_output = smearer.smear(self._smearer, iq_in_temp, iq_out,
#0, self.nbins - 1)
temp_first, temp_last)
#first_bin, last_bin)
if smear_output < 0:
msg = "_BaseSmearer: could not smear, code = %g" % smear_output
raise RuntimeError, msg
temp_first = first_bin + self.nbins_low
temp_last = self.nbins - self.nbins_high
out = iq_out[temp_first: temp_last]
return out
def _initialize_smearer(self):
"""
Place holder for initializing data smearer
"""
return NotImplemented
def _get_unextrapolated_bin(self, first_bin = 0, last_bin = 0):
"""
Get unextrapolated first bin and the last bin
: param first_bin: extrapolated first_bin
: param last_bin: extrapolated last_bin
: return fist_bin, last_bin: unextrapolated first and last bin
"""
# For first bin
if first_bin <= self.nbins_low:
first_bin = 0
else:
first_bin = first_bin - self.nbins_low
# For last bin
if last_bin >= (self.nbins - self.nbins_high):
last_bin = self.nbins - (self.nbins_high + self.nbins_low + 1)
elif last_bin >= self.nbins_low:
last_bin = last_bin - self.nbins_low
else:
last_bin = 0
return first_bin, last_bin
def _get_extrapolated_bin(self, first_bin = 0, last_bin = 0):
"""
Get extrapolated first bin and the last bin
: param first_bin: unextrapolated first_bin
: param last_bin: unextrapolated last_bin
: return first_bin, last_bin: extrapolated first and last bin
"""
# For the first bin
# In the case that needs low extrapolation data
first_bin = 0
# For last bin
if last_bin >= self.nbins - (self.nbins_high + self.nbins_low + 1):
# In the case that needs higher q extrapolation data
last_bin = self.nbins - 1
else:
# In the case that doesn't need higher q extrapolation data
last_bin += self.nbins_low
return first_bin, last_bin
class _SlitSmearer(_BaseSmearer):
"""
Slit smearing for I(q) array
"""
def __init__(self, nbins=None, width=None, height=None, min=None, max=None):
"""
Initialization
:param iq: I(q) array [cm-1]
:param width: slit width [A-1]
:param height: slit height [A-1]
:param min: Q_min [A-1]
:param max: Q_max [A-1]
"""
_BaseSmearer.__init__(self)
## Slit width in Q units
self.width = width
## Slit height in Q units
self.height = height
## Q_min (Min Q-value for I(q))
self.min = min
## Q_max (Max Q_value for I(q))
self.max = max
## Number of Q bins
self.nbins = nbins
## Number of points used in the smearing computation
self.npts = 3000
## Smearing matrix
self._weights = None
self.qvalues = None
def _initialize_smearer(self):
"""
Initialize the C++ smearer object.
This method HAS to be called before smearing
"""
#self._smearer = smearer.new_slit_smearer(self.width,
# self.height, self.min, self.max, self.nbins)
self._smearer = smearer.new_slit_smearer_with_q(self.width,
self.height, self.qvalues)
self._init_complete = True
def get_unsmeared_range(self, q_min, q_max):
"""
Determine the range needed in unsmeared-Q to cover
the smeared Q range
"""
# Range used for input to smearing
_qmin_unsmeared = q_min
_qmax_unsmeared = q_max
try:
_qmin_unsmeared = self.min
_qmax_unsmeared = self.max
except:
logging.error("_SlitSmearer.get_bin_range: %s" % sys.exc_value)
return _qmin_unsmeared, _qmax_unsmeared
[docs]class SlitSmearer(_SlitSmearer):
"""
Adaptor for slit smearing class and SAS data
"""
def __init__(self, data1D, model = None):
"""
Assumption: equally spaced bins of increasing q-values.
:param data1D: data used to set the smearing parameters
"""
# Initialization from parent class
super(SlitSmearer, self).__init__()
## Slit width
self.width = 0
self.nbins_low = 0
self.nbins_high = 0
self.model = model
if data1D.dxw is not None and len(data1D.dxw) == len(data1D.x):
self.width = data1D.dxw[0]
# Sanity check
for value in data1D.dxw:
if value != self.width:
msg = "Slit smearing parameters must "
msg += " be the same for all data"
raise RuntimeError, msg
## Slit height
self.height = 0
if data1D.dxl is not None and len(data1D.dxl) == len(data1D.x):
self.height = data1D.dxl[0]
# Sanity check
for value in data1D.dxl:
if value != self.height:
msg = "Slit smearing parameters must be"
msg += " the same for all data"
raise RuntimeError, msg
# If a model is given, get the q extrapolation
if self.model == None:
data1d_x = data1D.x
else:
# Take larger sigma
if self.height > self.width:
# The denominator (2.0) covers all the possible w^2 + h^2 range
sigma_in = data1D.dxl / 2.0
elif self.width > 0:
sigma_in = data1D.dxw / 2.0
else:
sigma_in = []
self.nbins_low, self.nbins_high, _, data1d_x = \
get_qextrapolate(sigma_in, data1D.x)
## Number of Q bins
self.nbins = len(data1d_x)
## Minimum Q
self.min = min(data1d_x)
## Maximum
self.max = max(data1d_x)
## Q-values
self.qvalues = data1d_x
class _QSmearer(_BaseSmearer):
"""
Perform Gaussian Q smearing
"""
def __init__(self, nbins=None, width=None, min=None, max=None):
"""
Initialization
:param nbins: number of Q bins
:param width: array standard deviation in Q [A-1]
:param min: Q_min [A-1]
:param max: Q_max [A-1]
"""
_BaseSmearer.__init__(self)
## Standard deviation in Q [A-1]
self.width = width
## Q_min (Min Q-value for I(q))
self.min = min
## Q_max (Max Q_value for I(q))
self.max = max
## Number of Q bins
self.nbins = nbins
## Smearing matrix
self._weights = None
self.qvalues = None
def _initialize_smearer(self):
"""
Initialize the C++ smearer object.
This method HAS to be called before smearing
"""
#self._smearer = smearer.new_q_smearer(numpy.asarray(self.width),
# self.min, self.max, self.nbins)
self._smearer = smearer.new_q_smearer_with_q(numpy.asarray(self.width),
self.qvalues)
self._init_complete = True
def get_unsmeared_range(self, q_min, q_max):
"""
Determine the range needed in unsmeared-Q to cover
the smeared Q range
Take 3 sigmas as the offset between smeared and unsmeared space
"""
# Range used for input to smearing
_qmin_unsmeared = q_min
_qmax_unsmeared = q_max
try:
offset = 3.0 * max(self.width)
_qmin_unsmeared = self.min#max([self.min, q_min - offset])
_qmax_unsmeared = self.max#min([self.max, q_max + offset])
except:
logging.error("_QSmearer.get_bin_range: %s" % sys.exc_value)
return _qmin_unsmeared, _qmax_unsmeared
[docs]class QSmearer(_QSmearer):
"""
Adaptor for Gaussian Q smearing class and SAS data
"""
def __init__(self, data1D, model = None):
"""
Assumption: equally spaced bins of increasing q-values.
:param data1D: data used to set the smearing parameters
"""
# Initialization from parent class
super(QSmearer, self).__init__()
data1d_x = []
self.nbins_low = 0
self.nbins_high = 0
self.model = model
## Resolution
#self.width = numpy.zeros(len(data1D.x))
if data1D.dx is not None and len(data1D.dx) == len(data1D.x):
self.width = data1D.dx
if self.model == None:
data1d_x = data1D.x
else:
self.nbins_low, self.nbins_high, self.width, data1d_x = \
get_qextrapolate(self.width, data1D.x)
## Number of Q bins
self.nbins = len(data1d_x)
## Minimum Q
self.min = min(data1d_x)
## Maximum
self.max = max(data1d_x)
## Q-values
self.qvalues = data1d_x
from .resolution import Slit1D, Pinhole1D
[docs]class PySmear(object):
"""
Wrapper for pure python sasmodels resolution functions.
"""
def __init__(self, resolution, model):
self.model = model
self.resolution = resolution
self.offset = numpy.searchsorted(self.resolution.q_calc, self.resolution.q[0])
[docs] def apply(self, iq_in, first_bin=0, last_bin=None):
"""
Apply the resolution function to the data.
Note that this is called with iq_in matching data.x, but with
iq_in[first_bin:last_bin] set to theory values for these bins,
and the remainder left undefined. The first_bin, last_bin values
should be those returned from get_bin_range.
The returned value is of the same length as iq_in, with the range
first_bin:last_bin set to the resolution smeared values.
"""
if last_bin is None: last_bin = len(iq_in)
start, end = first_bin + self.offset, last_bin + self.offset
q_calc = self.resolution.q_calc
iq_calc = numpy.empty_like(q_calc)
if start > 0:
iq_calc[:start] = self.model.evalDistribution(q_calc[:start])
if end+1 < len(q_calc):
iq_calc[end+1:] = self.model.evalDistribution(q_calc[end+1:])
iq_calc[start:end+1] = iq_in[first_bin:last_bin+1]
smeared = self.resolution.apply(iq_calc)
return smeared
__call__ = apply
[docs] def get_bin_range(self, q_min=None, q_max=None):
"""
For a given q_min, q_max, find the corresponding indices in the data.
Returns first, last.
Note that these are indexes into q from the data, not the q_calc
needed by the resolution function. Note also that these are the
indices, not the range limits. That is, the complete range will be
q[first:last+1].
"""
q = self.resolution.q
first = numpy.searchsorted(q, q_min)
last = numpy.searchsorted(q, q_max)
return first, min(last,len(q)-1)
[docs]def slit_smear(data, model=None):
q = data.x
width = data.dxw if data.dxw is not None else 0
height = data.dxl if data.dxl is not None else 0
# TODO: width and height seem to be reversed
return PySmear(Slit1D(q, height, width), model)
[docs]def pinhole_smear(data, model=None):
q = data.x
width = data.dx if data.dx is not None else 0
return PySmear(Pinhole1D(q, width), model)