Source code for sas.models.CylinderModel

##############################################################################
# This software was developed by the University of Tennessee as part of the
# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
# project funded by the US National Science Foundation.
#
# If you use DANSE applications to do scientific research that leads to
# publication, we ask that you acknowledge the use of the software with the
# following sentence:
#
# This work benefited from DANSE software developed under NSF award DMR-0520547
#
# Copyright 2008-2011, University of Tennessee
##############################################################################

"""
Provide functionality for a C extension model

.. WARNING::
   THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
   DO NOT MODIFY THIS FILE, MODIFY
   src/sas/models/include/cylinder.h
   AND RE-RUN THE GENERATOR SCRIPT
"""

from sas.models.BaseComponent import BaseComponent
from sas.models.sas_extension.c_models import CCylinderModel
from numpy import inf

[docs]def create_CylinderModel(): """ Create a model instance """ obj = CylinderModel() # CCylinderModel.__init__(obj) is called by # the CylinderModel constructor return obj
[docs]class CylinderModel(CCylinderModel, BaseComponent): """ Class that evaluates a CylinderModel model. This file was auto-generated from src/sas/models/include/cylinder.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * scale = 1.0 * radius = 20.0 [A] * length = 400.0 [A] * sldCyl = 4e-06 [1/A^(2)] * sldSolv = 1e-06 [1/A^(2)] * background = 0.0 [1/cm] * cyl_theta = 60.0 [deg] * cyl_phi = 60.0 [deg] * M0_sld_cyl = 0.0 [1/A^(2)] * M_theta_cyl = 0.0 [deg] * M_phi_cyl = 0.0 [deg] * M0_sld_solv = 0.0 [1/A^(2)] * M_theta_solv = 0.0 [deg] * M_phi_solv = 0.0 [deg] * Up_frac_i = 0.5 [u/(u+d)] * Up_frac_f = 0.5 [u/(u+d)] * Up_theta = 0.0 [deg] """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CCylinderModel.__init__, (self,)) CCylinderModel.__init__(self) self.is_multifunc = False ## Name of the model self.name = "CylinderModel" ## Model description self.description = """ f(q)= 2*(sldCyl - sldSolv)*V*sin(qLcos(alpha/2)) /[qLcos(alpha/2)]*J1(qRsin(alpha/2))/[qRsin(alpha)] P(q,alpha)= scale/V*f(q)^(2)+bkg V: Volume of the cylinder R: Radius of the cylinder L: Length of the cylinder J1: The bessel function alpha: angle betweenthe axis of the cylinder and the q-vector for 1D :the ouput is P(q)=scale/V*integral from pi/2 to zero of... f(q)^(2)*sin(alpha)*dalpha+ bkg """ ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['radius'] = ['[A]', 0.0, inf] self.details['length'] = ['[A]', 0.0, inf] self.details['sldCyl'] = ['[1/A^(2)]', None, None] self.details['sldSolv'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['cyl_theta'] = ['[deg]', None, None] self.details['cyl_phi'] = ['[deg]', None, None] self.details['M0_sld_cyl'] = ['[1/A^(2)]', None, None] self.details['M_theta_cyl'] = ['[deg]', None, None] self.details['M_phi_cyl'] = ['[deg]', None, None] self.details['M0_sld_solv'] = ['[1/A^(2)]', None, None] self.details['M_theta_solv'] = ['[deg]', None, None] self.details['M_phi_solv'] = ['[deg]', None, None] self.details['Up_frac_i'] = ['[u/(u+d)]', None, None] self.details['Up_frac_f'] = ['[u/(u+d)]', None, None] self.details['Up_theta'] = ['[deg]', None, None] ## fittable parameters self.fixed = ['cyl_phi.width', 'cyl_theta.width', 'length.width', 'radius.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = ['cyl_phi', 'cyl_theta', 'cyl_phi.width', 'cyl_theta.width', 'M0_sld_cyl', 'M_theta_cyl', 'M_phi_cyl', 'M0_sld_solv', 'M_theta_solv', 'M_phi_solv', 'Up_frac_i', 'Up_frac_f', 'Up_theta'] ## parameters with magnetism self.magnetic_params = ['M0_sld_cyl', 'M_theta_cyl', 'M_phi_cyl', 'M0_sld_solv', 'M_theta_solv', 'M_phi_solv', 'Up_frac_i', 'Up_frac_f', 'Up_theta'] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_CylinderModel, tuple(), state, None, None)
[docs] def clone(self): """ Return a identical copy of self """ return self._clone(CylinderModel())
[docs] def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CCylinderModel.run(self, x)
[docs] def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CCylinderModel.runXY(self, x)
[docs] def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CCylinderModel.evalDistribution(self, x)
[docs] def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CCylinderModel.calculate_ER(self)
[docs] def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CCylinderModel.calculate_VR(self)
[docs] def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CCylinderModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file