Source code for sas.models.CoreFourShellModel

##############################################################################
# This software was developed by the University of Tennessee as part of the
# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
# project funded by the US National Science Foundation.
#
# If you use DANSE applications to do scientific research that leads to
# publication, we ask that you acknowledge the use of the software with the
# following sentence:
#
# This work benefited from DANSE software developed under NSF award DMR-0520547
#
# Copyright 2008-2011, University of Tennessee
##############################################################################

"""
Provide functionality for a C extension model

.. WARNING::
   THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
   DO NOT MODIFY THIS FILE, MODIFY
   src/sas/models/include/corefourshell.h
   AND RE-RUN THE GENERATOR SCRIPT
"""

from sas.models.BaseComponent import BaseComponent
from sas.models.sas_extension.c_models import CCoreFourShellModel
from numpy import inf

[docs]def create_CoreFourShellModel(): """ Create a model instance """ obj = CoreFourShellModel() # CCoreFourShellModel.__init__(obj) is called by # the CoreFourShellModel constructor return obj
[docs]class CoreFourShellModel(CCoreFourShellModel, BaseComponent): """ Class that evaluates a CoreFourShellModel model. This file was auto-generated from src/sas/models/include/corefourshell.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * scale = 1.0 * rad_core0 = 60.0 [A] * sld_core0 = 6.4e-06 [1/A^(2)] * thick_shell1 = 10.0 [A] * sld_shell1 = 1e-06 [1/A^(2)] * thick_shell2 = 10.0 [A] * sld_shell2 = 2e-06 [1/A^(2)] * thick_shell3 = 10.0 [A] * sld_shell3 = 3e-06 [1/A^(2)] * thick_shell4 = 10.0 [A] * sld_shell4 = 4e-06 [1/A^(2)] * sld_solv = 6.4e-06 [1/A^(2)] * background = 0.001 [1/cm] * M0_sld_shell1 = 0.0 [1/A^(2)] * M_theta_shell1 = 0.0 [deg] * M_phi_shell1 = 0.0 [deg] * M0_sld_shell2 = 0.0 [1/A^(2)] * M_theta_shell2 = 0.0 [deg] * M_phi_shell2 = 0.0 [deg] * M0_sld_shell3 = 0.0 [1/A^(2)] * M_theta_shell3 = 0.0 [deg] * M_phi_shell3 = 0.0 [deg] * M0_sld_shell4 = 0.0 [1/A^(2)] * M_theta_shell4 = 0.0 [deg] * M_phi_shell4 = 0.0 [deg] * M0_sld_core0 = 0.0 [1/A^(2)] * M_theta_core0 = 0.0 [deg] * M_phi_core0 = 0.0 [deg] * M0_sld_solv = 0.0 [1/A^(2)] * M_theta_solv = 0.0 [deg] * M_phi_solv = 0.0 [deg] * Up_frac_i = 0.5 [u/(u+d)] * Up_frac_f = 0.5 [u/(u+d)] * Up_theta = 0.0 [deg] """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CCoreFourShellModel.__init__, (self,)) CCoreFourShellModel.__init__(self) self.is_multifunc = False ## Name of the model self.name = "CoreFourShellModel" ## Model description self.description = """ Calculates the scattering intensity from a core-4 shell structure. scale = scale factor * volume fraction rad_core0: the radius of the core sld_core0: the SLD of the core thick_shelli: the thickness of the i'th shell from the core sld_shelli: the SLD of the i'th shell from the core sld_solv: the SLD of the solvent background: incoherent background """ ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['rad_core0'] = ['[A]', None, None] self.details['sld_core0'] = ['[1/A^(2)]', None, None] self.details['thick_shell1'] = ['[A]', None, None] self.details['sld_shell1'] = ['[1/A^(2)]', None, None] self.details['thick_shell2'] = ['[A]', None, None] self.details['sld_shell2'] = ['[1/A^(2)]', None, None] self.details['thick_shell3'] = ['[A]', None, None] self.details['sld_shell3'] = ['[1/A^(2)]', None, None] self.details['thick_shell4'] = ['[A]', None, None] self.details['sld_shell4'] = ['[1/A^(2)]', None, None] self.details['sld_solv'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['M0_sld_shell1'] = ['[1/A^(2)]', None, None] self.details['M_theta_shell1'] = ['[deg]', None, None] self.details['M_phi_shell1'] = ['[deg]', None, None] self.details['M0_sld_shell2'] = ['[1/A^(2)]', None, None] self.details['M_theta_shell2'] = ['[deg]', None, None] self.details['M_phi_shell2'] = ['[deg]', None, None] self.details['M0_sld_shell3'] = ['[1/A^(2)]', None, None] self.details['M_theta_shell3'] = ['[deg]', None, None] self.details['M_phi_shell3'] = ['[deg]', None, None] self.details['M0_sld_shell4'] = ['[1/A^(2)]', None, None] self.details['M_theta_shell4'] = ['[deg]', None, None] self.details['M_phi_shell4'] = ['[deg]', None, None] self.details['M0_sld_core0'] = ['[1/A^(2)]', None, None] self.details['M_theta_core0'] = ['[deg]', None, None] self.details['M_phi_core0'] = ['[deg]', None, None] self.details['M0_sld_solv'] = ['[1/A^(2)]', None, None] self.details['M_theta_solv'] = ['[deg]', None, None] self.details['M_phi_solv'] = ['[deg]', None, None] self.details['Up_frac_i'] = ['[u/(u+d)]', None, None] self.details['Up_frac_f'] = ['[u/(u+d)]', None, None] self.details['Up_theta'] = ['[deg]', None, None] ## fittable parameters self.fixed = ['thick_shell4.width', 'thick_shell1.width', 'thick_shell2.width', 'thick_shell3.width', 'rad_core0.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = ['M0_sld_shell4', 'M_theta_shell4', 'M_phi_shell4', 'M0_sld_shell3', 'M_theta_shell3', 'M_phi_shell3', 'M0_sld_shell2', 'M_theta_shell2', 'M_phi_shell2', 'M0_sld_shell1', 'M_theta_shell1', 'M_phi_shell1', 'M0_sld_core0', 'M_theta_core0', 'M_phi_core0', 'M0_sld_solv', 'M_theta_solv', 'M_phi_solv', 'Up_frac_i', 'Up_frac_f', 'Up_theta'] ## parameters with magnetism self.magnetic_params = ['M0_sld_shell4', 'M_theta_shell4', 'M_phi_shell4', 'M0_sld_shell3', 'M_theta_shell3', 'M_phi_shell3', 'M0_sld_shell2', 'M_theta_shell2', 'M_phi_shell2', 'M0_sld_shell1', 'M_theta_shell1', 'M_phi_shell1', 'M0_sld_core0', 'M_theta_core0', 'M_phi_core0', 'M0_sld_solv', 'M_theta_solv', 'M_phi_solv', 'Up_frac_i', 'Up_frac_f', 'Up_theta'] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_CoreFourShellModel, tuple(), state, None, None)
[docs] def clone(self): """ Return a identical copy of self """ return self._clone(CoreFourShellModel())
[docs] def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CCoreFourShellModel.run(self, x)
[docs] def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CCoreFourShellModel.runXY(self, x)
[docs] def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CCoreFourShellModel.evalDistribution(self, x)
[docs] def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CCoreFourShellModel.calculate_ER(self)
[docs] def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CCoreFourShellModel.calculate_VR(self)
[docs] def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CCoreFourShellModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file