##############################################################################
# This software was developed by the University of Tennessee as part of the
# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
# project funded by the US National Science Foundation.
#
# If you use DANSE applications to do scientific research that leads to
# publication, we ask that you acknowledge the use of the software with the
# following sentence:
#
# This work benefited from DANSE software developed under NSF award DMR-0520547
#
# Copyright 2008-2011, University of Tennessee
##############################################################################
"""
Provide functionality for a C extension model
.. WARNING::
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
DO NOT MODIFY THIS FILE, MODIFY
src/sas/models/include/rpa.h
AND RE-RUN THE GENERATOR SCRIPT
"""
from sas.models.BaseComponent import BaseComponent
from sas.models.sas_extension.c_models import CRPAModel
from numpy import inf
[docs]def create_RPAModel():
"""
Create a model instance
"""
obj = RPAModel()
# CRPAModel.__init__(obj) is called by
# the RPAModel constructor
return obj
[docs]class RPAModel(CRPAModel, BaseComponent):
"""
Class that evaluates a RPAModel model.
This file was auto-generated from src/sas/models/include/rpa.h.
Refer to that file and the structure it contains
for details of the model.
List of default parameters:
* lcase_n = 0.0
* ba = 5.0
* bb = 5.0
* bc = 5.0
* bd = 5.0
* Kab = -0.0004
* Kac = -0.0004
* Kad = -0.0004
* Kbc = -0.0004
* Kbd = -0.0004
* Kcd = -0.0004
* scale = 1.0
* background = 0.0 [1/cm]
* Na = 1000.0
* Phia = 0.25
* va = 100.0
* La = 1e-12
* Nb = 1000.0
* Phib = 0.25
* vb = 100.0
* Lb = 1e-12
* Nc = 1000.0
* Phic = 0.25
* vc = 100.0
* Lc = 1e-12
* Nd = 1000.0
* Phid = 0.25
* vd = 100.0
* Ld = 0.0
"""
def __init__(self, multfactor=1):
""" Initialization """
self.__dict__ = {}
# Initialize BaseComponent first, then sphere
BaseComponent.__init__(self)
#apply(CRPAModel.__init__, (self,))
CRPAModel.__init__(self)
self.is_multifunc = False
## Name of the model
self.name = "RPAModel"
## Model description
self.description = """
THIS FORMALISM APPLIES TO MULTICOMPONENT POLYMER MIXTURES IN THE
HOMOGENEOUS (MIXED) PHASE REGION ONLY.;
CASE 0: C/D BINARY MIXTURE OF HOMOPOLYMERS
CASE 1: C-D DIBLOCK COPOLYMER
CASE 2: B/C/D TERNARY MIXTURE OF HOMOPOLYMERS
CASE 3: B/C-D MIXTURE OF HOMOPOLYMER B AND
DIBLOCK COPOLYMER C-D
CASE 4: B-C-D TRIBLOCK COPOLYMER
CASE 5: A/B/C/D QUATERNARY MIXTURE OF HOMOPOLYMERS
CASE 6: A/B/C-D MIXTURE OF TWO HOMOPOLYMERS A/B
AND A DIBLOCK C-D
CASE 7: A/B-C-D MIXTURE OF A HOMOPOLYMER A AND A
TRIBLOCK B-C-D
CASE 8: A-B/C-D MIXTURE OF TWO DIBLOCK COPOLYMERS
A-B AND C-D
CASE 9: A-B-C-D FOUR-BLOCK COPOLYMER
See details in the model function help
"""
## Parameter details [units, min, max]
self.details = {}
self.details['lcase_n'] = ['', None, None]
self.details['ba'] = ['', None, None]
self.details['bb'] = ['', None, None]
self.details['bc'] = ['', None, None]
self.details['bd'] = ['', None, None]
self.details['Kab'] = ['', None, None]
self.details['Kac'] = ['', None, None]
self.details['Kad'] = ['', None, None]
self.details['Kbc'] = ['', None, None]
self.details['Kbd'] = ['', None, None]
self.details['Kcd'] = ['', None, None]
self.details['scale'] = ['', None, None]
self.details['background'] = ['[1/cm]', None, None]
self.details['Na'] = ['', None, None]
self.details['Phia'] = ['', None, None]
self.details['va'] = ['', None, None]
self.details['La'] = ['', None, None]
self.details['Nb'] = ['', None, None]
self.details['Phib'] = ['', None, None]
self.details['vb'] = ['', None, None]
self.details['Lb'] = ['', None, None]
self.details['Nc'] = ['', None, None]
self.details['Phic'] = ['', None, None]
self.details['vc'] = ['', None, None]
self.details['Lc'] = ['', None, None]
self.details['Nd'] = ['', None, None]
self.details['Phid'] = ['', None, None]
self.details['vd'] = ['', None, None]
self.details['Ld'] = ['', None, None]
## fittable parameters
self.fixed = []
## non-fittable parameters
self.non_fittable = ['lcase_n',
'Na',
'Phia',
'va',
'La',
'Nb',
'Phib',
'vb',
'Lb',
'Nc',
'Phic',
'vc',
'Lc',
'Nd',
'Phid',
'vd',
'Ld']
## parameters with orientation
self.orientation_params = []
## parameters with magnetism
self.magnetic_params = []
self.category = None
self.multiplicity_info = None
def __setstate__(self, state):
"""
restore the state of a model from pickle
"""
self.__dict__, self.params, self.dispersion = state
def __reduce_ex__(self, proto):
"""
Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of
c model.
"""
state = (self.__dict__, self.params, self.dispersion)
return (create_RPAModel, tuple(), state, None, None)
[docs] def clone(self):
""" Return a identical copy of self """
return self._clone(RPAModel())
[docs] def run(self, x=0.0):
"""
Evaluate the model
:param x: input q, or [q,phi]
:return: scattering function P(q)
"""
return CRPAModel.run(self, x)
[docs] def runXY(self, x=0.0):
"""
Evaluate the model in cartesian coordinates
:param x: input q, or [qx, qy]
:return: scattering function P(q)
"""
return CRPAModel.runXY(self, x)
[docs] def evalDistribution(self, x):
"""
Evaluate the model in cartesian coordinates
:param x: input q[], or [qx[], qy[]]
:return: scattering function P(q[])
"""
return CRPAModel.evalDistribution(self, x)
[docs] def calculate_ER(self):
"""
Calculate the effective radius for P(q)*S(q)
:return: the value of the effective radius
"""
return CRPAModel.calculate_ER(self)
[docs] def calculate_VR(self):
"""
Calculate the volf ratio for P(q)*S(q)
:return: the value of the volf ratio
"""
return CRPAModel.calculate_VR(self)
[docs] def set_dispersion(self, parameter, dispersion):
"""
Set the dispersion object for a model parameter
:param parameter: name of the parameter [string]
:param dispersion: dispersion object of type DispersionModel
"""
return CRPAModel.set_dispersion(self,
parameter, dispersion.cdisp)
# End of file