##############################################################################
# This software was developed by the University of Tennessee as part of the
# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
# project funded by the US National Science Foundation.
#
# If you use DANSE applications to do scientific research that leads to
# publication, we ask that you acknowledge the use of the software with the
# following sentence:
#
# This work benefited from DANSE software developed under NSF award DMR-0520547
#
# Copyright 2008-2011, University of Tennessee
##############################################################################
"""
Provide functionality for a C extension model
.. WARNING::
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
DO NOT MODIFY THIS FILE, MODIFY
src/sas/models/include/capcyl.h
AND RE-RUN THE GENERATOR SCRIPT
"""
from sas.models.BaseComponent import BaseComponent
from sas.models.sas_extension.c_models import CCappedCylinderModel
from numpy import inf
[docs]def create_CappedCylinderModel():
"""
Create a model instance
"""
obj = CappedCylinderModel()
# CCappedCylinderModel.__init__(obj) is called by
# the CappedCylinderModel constructor
return obj
[docs]class CappedCylinderModel(CCappedCylinderModel, BaseComponent):
"""
Class that evaluates a CappedCylinderModel model.
This file was auto-generated from src/sas/models/include/capcyl.h.
Refer to that file and the structure it contains
for details of the model.
List of default parameters:
* scale = 1.0
* rad_cyl = 20.0 [A]
* len_cyl = 400.0 [A]
* rad_cap = 40.0 [A]
* sld_capcyl = 1e-06 [1/A^(2)]
* sld_solv = 6.3e-06 [1/A^(2)]
* background = 0.0 [1/cm]
* theta = 0.0 [deg]
* phi = 0.0 [deg]
"""
def __init__(self, multfactor=1):
""" Initialization """
self.__dict__ = {}
# Initialize BaseComponent first, then sphere
BaseComponent.__init__(self)
#apply(CCappedCylinderModel.__init__, (self,))
CCappedCylinderModel.__init__(self)
self.is_multifunc = False
## Name of the model
self.name = "CappedCylinderModel"
## Model description
self.description = """
Calculates the scattering from a cylinder with spherical section end-caps.
That is, a sphereocylinder
with end caps that have a radius larger than
that of the cylinder and the center of the
end cap radius lies within the cylinder.
Note: As the length of cylinder -->0,
it becomes a ConvexLens.
It must be that rad_cyl <(=) rad_cap.
[Parameters];
scale: volume fraction of spheres,
background:incoherent background,
rad_cyl: radius of the cylinder,
len_cyl: length of the cylinder,
rad_cap: radius of the semi-spherical cap,
sld_capcyl: SLD of the capped cylinder,
sld_solv: SLD of the solvent.
"""
## Parameter details [units, min, max]
self.details = {}
self.details['scale'] = ['', None, None]
self.details['rad_cyl'] = ['[A]', None, None]
self.details['len_cyl'] = ['[A]', None, None]
self.details['rad_cap'] = ['[A]', None, None]
self.details['sld_capcyl'] = ['[1/A^(2)]', None, None]
self.details['sld_solv'] = ['[1/A^(2)]', None, None]
self.details['background'] = ['[1/cm]', None, None]
self.details['theta'] = ['[deg]', None, None]
self.details['phi'] = ['[deg]', None, None]
## fittable parameters
self.fixed = ['rad_cyl.width',
'len_cyl',
'rad_cap',
'phi.width',
'theta.width']
## non-fittable parameters
self.non_fittable = []
## parameters with orientation
self.orientation_params = ['phi',
'theta',
'phi.width',
'theta.width']
## parameters with magnetism
self.magnetic_params = []
self.category = None
self.multiplicity_info = None
def __setstate__(self, state):
"""
restore the state of a model from pickle
"""
self.__dict__, self.params, self.dispersion = state
def __reduce_ex__(self, proto):
"""
Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of
c model.
"""
state = (self.__dict__, self.params, self.dispersion)
return (create_CappedCylinderModel, tuple(), state, None, None)
[docs] def clone(self):
""" Return a identical copy of self """
return self._clone(CappedCylinderModel())
[docs] def run(self, x=0.0):
"""
Evaluate the model
:param x: input q, or [q,phi]
:return: scattering function P(q)
"""
return CCappedCylinderModel.run(self, x)
[docs] def runXY(self, x=0.0):
"""
Evaluate the model in cartesian coordinates
:param x: input q, or [qx, qy]
:return: scattering function P(q)
"""
return CCappedCylinderModel.runXY(self, x)
[docs] def evalDistribution(self, x):
"""
Evaluate the model in cartesian coordinates
:param x: input q[], or [qx[], qy[]]
:return: scattering function P(q[])
"""
return CCappedCylinderModel.evalDistribution(self, x)
[docs] def calculate_ER(self):
"""
Calculate the effective radius for P(q)*S(q)
:return: the value of the effective radius
"""
return CCappedCylinderModel.calculate_ER(self)
[docs] def calculate_VR(self):
"""
Calculate the volf ratio for P(q)*S(q)
:return: the value of the volf ratio
"""
return CCappedCylinderModel.calculate_VR(self)
[docs] def set_dispersion(self, parameter, dispersion):
"""
Set the dispersion object for a model parameter
:param parameter: name of the parameter [string]
:param dispersion: dispersion object of type DispersionModel
"""
return CCappedCylinderModel.set_dispersion(self,
parameter, dispersion.cdisp)
# End of file