sas.invariant package
Submodules
sas.invariant.invariant module
This module implements invariant and its related computations.
author: | Gervaise B. Alina/UTK |
---|---|
author: | Mathieu Doucet/UTK |
author: | Jae Cho/UTK |
-
class
sas.invariant.invariant.
Extrapolator
(data, model=None)[source] Bases:
object
Extrapolate I(q) distribution using a given model
-
fit
(power=None, qmin=None, qmax=None)[source] Fit data for y = ax + b return a and b
Parameters: - power – a fixed, otherwise None
- qmin – Minimum Q-value
- qmax – Maximum Q-value
-
-
class
sas.invariant.invariant.
Guinier
(scale=1, radius=60)[source] Bases:
sas.invariant.invariant.Transform
class of type Transform that performs operations related to guinier function
-
evaluate_model
(x)[source] return F(x)= scale* e-((radius*x)**2/3)
-
evaluate_model_errors
(x)[source] Returns the error on I(q) for the given array of q-values
Parameters: x – array of q-values
-
extract_model_parameters
(constant, slope, dconstant=0, dslope=0)[source] assign new value to the scale and the radius
-
linearize_q_value
(value)[source] Transform the input q-value for linearization
Parameters: value – q-value Returns: q*q
-
-
class
sas.invariant.invariant.
InvariantCalculator
(data, background=0, scale=1)[source] Bases:
object
Compute invariant if data is given. Can provide volume fraction and surface area if the user provides Porod constant and contrast values.
Precondition: the user must send a data of type DataLoader.Data1D the user provide background and scale values. Note: Some computations depends on each others. -
get_data
()[source] Returns: self._data
-
get_extra_data_high
(npts_in=None, q_end=10, npts=20)[source] Returns the extrapolated data used for the high-Q invariant calculation. By default, the distribution will cover the data points used for the extrapolation. The number of overlap points is a parameter (npts_in). By default, the maximum q-value of the distribution will be Q_MAXIMUM, the maximum q-value used when extrapolating for the purpose of the invariant calculation.
Parameters: - npts_in – number of data points for which the extrapolated data overlap
- q_end – is the maximum value to uses for extrapolated data
- npts – the number of points in the extrapolated distribution
-
get_extra_data_low
(npts_in=None, q_start=None, npts=20)[source] Returns the extrapolated data used for the loew-Q invariant calculation. By default, the distribution will cover the data points used for the extrapolation. The number of overlap points is a parameter (npts_in). By default, the maximum q-value of the distribution will be the minimum q-value used when extrapolating for the purpose of the invariant calculation.
Parameters: - npts_in – number of data points for which the extrapolated data overlap
- q_start – is the minimum value to uses for extrapolated data
- npts – the number of points in the extrapolated distribution
-
get_extrapolation_power
(range='high')[source] Returns: the fitted power for power law function for a given extrapolation range
-
get_qstar
(extrapolation=None)[source] Compute the invariant of the local copy of data.
Parameters: extrapolation – string to apply optional extrapolation Return q_star: invariant of the data within data’s q range Warning: When using setting data to Data1D , the user is responsible of checking that the scale and the background are properly apply to the data
-
get_qstar_high
()[source] Compute the invariant for extrapolated data at high q range.
- Implementation:
- data = self._get_extra_data_high() return self._get_qstar()
Return q_star: the invariant for data extrapolated at high q.
-
get_qstar_low
()[source] Compute the invariant for extrapolated data at low q range.
- Implementation:
- data = self._get_extra_data_low() return self._get_qstar()
Return q_star: the invariant for data extrapolated at low q.
-
get_qstar_with_error
(extrapolation=None)[source] Compute the invariant uncertainty. This uncertainty computation depends on whether or not the data is smeared.
Parameters: extrapolation – string to apply optional extrapolation Returns: invariant, the invariant uncertainty
-
get_surface
(contrast, porod_const, extrapolation=None)[source] Compute the specific surface from the data.
Implementation:
V = self.get_volume_fraction(contrast, extrapolation) Compute the surface given by: surface = (2*pi *V(1- V)*porod_const)/ q_star
Parameters: - contrast – contrast value to compute the volume
- porod_const – Porod constant to compute the surface
- extrapolation – string to apply optional extrapolation
Returns: specific surface
-
get_surface_with_error
(contrast, porod_const, extrapolation=None)[source] Compute uncertainty of the surface value as well as the surface value. The uncertainty is given as follow:
dS = porod_const *2*pi[( dV -2*V*dV)/q_star + dq_star(v-v**2) q_star: the invariant value dq_star: the invariant uncertainty V: the volume fraction value dV: the volume uncertainty
Parameters: - contrast – contrast value
- porod_const – porod constant value
- extrapolation – string to apply optional extrapolation
Return S, dS: the surface, with its uncertainty
-
get_volume_fraction
(contrast, extrapolation=None)[source] Compute volume fraction is deduced as follow:
q_star = 2*(pi*contrast)**2* volume( 1- volume) for k = 10^(-8)*q_star/(2*(pi*|contrast|)**2) we get 2 values of volume: with 1 - 4 * k >= 0 volume1 = (1- sqrt(1- 4*k))/2 volume2 = (1+ sqrt(1- 4*k))/2 q_star: the invariant value included extrapolation is applied unit 1/A^(3)*1/cm q_star = self.get_qstar() the result returned will be 0 <= volume <= 1
Parameters: - contrast – contrast value provides by the user of type float. contrast unit is 1/A^(2)= 10^(16)cm^(2)
- extrapolation – string to apply optional extrapolation
Returns: volume fraction
Note: volume fraction must have no unit
-
get_volume_fraction_with_error
(contrast, extrapolation=None)[source] Compute uncertainty on volume value as well as the volume fraction This uncertainty is given by the following equation:
dV = 0.5 * (4*k* dq_star) /(2* math.sqrt(1-k* q_star)) for k = 10^(-8)*q_star/(2*(pi*|contrast|)**2) q_star: the invariant value including extrapolated value if existing dq_star: the invariant uncertainty dV: the volume uncertainty
The uncertainty will be set to -1 if it can’t be computed.
Parameters: - contrast – contrast value
- extrapolation – string to apply optional extrapolation
Returns: V, dV = volume fraction, error on volume fraction
-
set_extrapolation
(range, npts=4, function=None, power=None)[source] Set the extrapolation parameters for the high or low Q-range. Note that this does not turn extrapolation on or off.
Parameters: - range – a keyword set the type of extrapolation . type string
- npts – the numbers of q points of data to consider for extrapolation
- function – a keyword to select the function to use for extrapolation. of type string.
- power – an power to apply power_low function
-
-
class
sas.invariant.invariant.
PowerLaw
(scale=1, power=4)[source] Bases:
sas.invariant.invariant.Transform
class of type transform that perform operation related to power_law function
-
evaluate_model
(x)[source] given a scale and a radius transform x, y using a power_law function
-
evaluate_model_errors
(x)[source] Returns the error on I(q) for the given array of q-values :param x: array of q-values
-
extract_model_parameters
(constant, slope, dconstant=0, dslope=0)[source] Assign new value to the scale and the power
-
linearize_q_value
(value)[source] Transform the input q-value for linearization
Parameters: value – q-value Returns: log(q)
-
-
class
sas.invariant.invariant.
Transform
[source] Bases:
object
Define interface that need to compute a function or an inverse function given some x, y
-
evaluate_model
(x)[source] Returns an array f(x) values where f is the Transform function.
-
evaluate_model_errors
(x)[source] Returns an array of I(q) errors
-
extract_model_parameters
(constant, slope, dconstant=0, dslope=0)[source] set private member
-
get_allowed_bins
(data)[source] Goes through the data points and returns a list of boolean values to indicate whether each points is allowed by the model or not.
Parameters: data – Data1D object
-
linearize_data
(data)[source] Linearize data so that a linear fit can be performed. Filter out the data that can’t be transformed.
Parameters: data – LoadData1D instance
-
linearize_q_value
(value)[source] Transform the input q-value for linearization
-
sas.invariant.invariant_mapper module
This module is a wrapper to a map function. It allows to loop through different invariant objects to call the same function
-
sas.invariant.invariant_mapper.
get_qstar
(inv, extrapolation=None)[source] Get invariant value (Q*)
-
sas.invariant.invariant_mapper.
get_qstar_with_error
(inv, extrapolation=None)[source] Get invariant value with uncertainty
-
sas.invariant.invariant_mapper.
get_surface
(inv, contrast, porod_const, extrapolation=None)[source] Get surface with uncertainty
-
sas.invariant.invariant_mapper.
get_surface_with_error
(inv, contrast, porod_const, extrapolation=None)[source] Get surface with uncertainty
-
sas.invariant.invariant_mapper.
get_volume_fraction
(inv, contrast, extrapolation=None)[source] Get volume fraction
-
sas.invariant.invariant_mapper.
get_volume_fraction_with_error
(inv, contrast, extrapolation=None)[source] Get volume fraction with uncertainty