##############################################################################
# This software was developed by the University of Tennessee as part of the
# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
# project funded by the US National Science Foundation.
#
# If you use DANSE applications to do scientific research that leads to
# publication, we ask that you acknowledge the use of the software with the
# following sentence:
#
# This work benefited from DANSE software developed under NSF award DMR-0520547
#
# Copyright 2008-2011, University of Tennessee
##############################################################################
"""
Provide functionality for a C extension model
.. WARNING::
THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
DO NOT MODIFY THIS FILE, MODIFY
src/sas/models/include/refl.h
AND RE-RUN THE GENERATOR SCRIPT
"""
from sas.models.BaseComponent import BaseComponent
from sas.models.sas_extension.c_models import CReflModel
from numpy import inf
[docs]def create_ReflModel():
"""
Create a model instance
"""
obj = ReflModel()
# CReflModel.__init__(obj) is called by
# the ReflModel constructor
return obj
[docs]class ReflModel(CReflModel, BaseComponent):
"""
Class that evaluates a ReflModel model.
This file was auto-generated from src/sas/models/include/refl.h.
Refer to that file and the structure it contains
for details of the model.
List of default parameters:
* n_layers = 1.0
* scale = 1.0
* thick_inter0 = 1.0 [A]
* func_inter0 = 0.0
* sld_bottom0 = 2.07e-06 [1/A^(2)]
* sld_medium = 1e-06 [1/A^(2)]
* background = 0.0
* sld_flat1 = 4e-06 [1/A^(2)]
* sld_flat2 = 3.5e-06 [1/A^(2)]
* sld_flat3 = 4e-06 [1/A^(2)]
* sld_flat4 = 3.5e-06 [1/A^(2)]
* sld_flat5 = 4e-06 [1/A^(2)]
* sld_flat6 = 3.5e-06 [1/A^(2)]
* sld_flat7 = 4e-06 [1/A^(2)]
* sld_flat8 = 3.5e-06 [1/A^(2)]
* sld_flat9 = 4e-06 [1/A^(2)]
* sld_flat10 = 3.5e-06 [1/A^(2)]
* thick_inter1 = 1.0 [A]
* thick_inter2 = 1.0 [A]
* thick_inter3 = 1.0 [A]
* thick_inter4 = 1.0 [A]
* thick_inter5 = 1.0 [A]
* thick_inter6 = 1.0 [A]
* thick_inter7 = 1.0 [A]
* thick_inter8 = 1.0 [A]
* thick_inter9 = 1.0 [A]
* thick_inter10 = 1.0 [A]
* thick_flat1 = 10.0 [A]
* thick_flat2 = 100.0 [A]
* thick_flat3 = 100.0 [A]
* thick_flat4 = 100.0 [A]
* thick_flat5 = 100.0 [A]
* thick_flat6 = 100.0 [A]
* thick_flat7 = 100.0 [A]
* thick_flat8 = 100.0 [A]
* thick_flat9 = 100.0 [A]
* thick_flat10 = 100.0 [A]
* func_inter1 = 0.0
* func_inter2 = 0.0
* func_inter3 = 0.0
* func_inter4 = 0.0
* func_inter5 = 0.0
* func_inter6 = 0.0
* func_inter7 = 0.0
* func_inter8 = 0.0
* func_inter9 = 0.0
* func_inter10 = 0.0
"""
def __init__(self, multfactor=1):
""" Initialization """
self.__dict__ = {}
# Initialize BaseComponent first, then sphere
BaseComponent.__init__(self)
#apply(CReflModel.__init__, (self,))
CReflModel.__init__(self)
self.is_multifunc = False
## Name of the model
self.name = "ReflModel"
## Model description
self.description = """
Calculate neutron reflectivity using the Parratt iterative formula
Parameters:
background:background
scale: scale factor
sld_bottom0: the SLD of the substrate
sld_medium: the SLD of the incident medium
or superstrate
sld_flatN: the SLD of the flat region of
the N'th layer
thick_flatN: the thickness of the flat
region of the N'th layer
func_interN: the function used to describe
the interface of the N'th layer
thick_interN: the thickness of the interface
of the N'th layer
Note: the layer number starts to increase
from the bottom (substrate) to the top.
"""
## Parameter details [units, min, max]
self.details = {}
self.details['n_layers'] = ['', None, None]
self.details['scale'] = ['', None, None]
self.details['thick_inter0'] = ['[A]', None, None]
self.details['func_inter0'] = ['', None, None]
self.details['sld_bottom0'] = ['[1/A^(2)]', None, None]
self.details['sld_medium'] = ['[1/A^(2)]', None, None]
self.details['background'] = ['', None, None]
self.details['sld_flat1'] = ['[1/A^(2)]', None, None]
self.details['sld_flat2'] = ['[1/A^(2)]', None, None]
self.details['sld_flat3'] = ['[1/A^(2)]', None, None]
self.details['sld_flat4'] = ['[1/A^(2)]', None, None]
self.details['sld_flat5'] = ['[1/A^(2)]', None, None]
self.details['sld_flat6'] = ['[1/A^(2)]', None, None]
self.details['sld_flat7'] = ['[1/A^(2)]', None, None]
self.details['sld_flat8'] = ['[1/A^(2)]', None, None]
self.details['sld_flat9'] = ['[1/A^(2)]', None, None]
self.details['sld_flat10'] = ['[1/A^(2)]', None, None]
self.details['thick_inter1'] = ['[A]', None, None]
self.details['thick_inter2'] = ['[A]', None, None]
self.details['thick_inter3'] = ['[A]', None, None]
self.details['thick_inter4'] = ['[A]', None, None]
self.details['thick_inter5'] = ['[A]', None, None]
self.details['thick_inter6'] = ['[A]', None, None]
self.details['thick_inter7'] = ['[A]', None, None]
self.details['thick_inter8'] = ['[A]', None, None]
self.details['thick_inter9'] = ['[A]', None, None]
self.details['thick_inter10'] = ['[A]', None, None]
self.details['thick_flat1'] = ['[A]', None, None]
self.details['thick_flat2'] = ['[A]', None, None]
self.details['thick_flat3'] = ['[A]', None, None]
self.details['thick_flat4'] = ['[A]', None, None]
self.details['thick_flat5'] = ['[A]', None, None]
self.details['thick_flat6'] = ['[A]', None, None]
self.details['thick_flat7'] = ['[A]', None, None]
self.details['thick_flat8'] = ['[A]', None, None]
self.details['thick_flat9'] = ['[A]', None, None]
self.details['thick_flat10'] = ['[A]', None, None]
self.details['func_inter1'] = ['', None, None]
self.details['func_inter2'] = ['', None, None]
self.details['func_inter3'] = ['', None, None]
self.details['func_inter4'] = ['', None, None]
self.details['func_inter5'] = ['', None, None]
self.details['func_inter6'] = ['', None, None]
self.details['func_inter7'] = ['', None, None]
self.details['func_inter8'] = ['', None, None]
self.details['func_inter9'] = ['', None, None]
self.details['func_inter10'] = ['', None, None]
## fittable parameters
self.fixed = []
## non-fittable parameters
self.non_fittable = ['n_layers',
'func_inter0',
'func_inter1',
'func_inter2',
'func_inter3',
'func_inter4',
'func_inter5',
'func_inter5',
'func_inter7',
'func_inter8',
'func_inter9',
'func_inter10']
## parameters with orientation
self.orientation_params = []
## parameters with magnetism
self.magnetic_params = []
self.category = None
self.multiplicity_info = None
def __setstate__(self, state):
"""
restore the state of a model from pickle
"""
self.__dict__, self.params, self.dispersion = state
def __reduce_ex__(self, proto):
"""
Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of
c model.
"""
state = (self.__dict__, self.params, self.dispersion)
return (create_ReflModel, tuple(), state, None, None)
[docs] def clone(self):
""" Return a identical copy of self """
return self._clone(ReflModel())
[docs] def run(self, x=0.0):
"""
Evaluate the model
:param x: input q, or [q,phi]
:return: scattering function P(q)
"""
return CReflModel.run(self, x)
[docs] def runXY(self, x=0.0):
"""
Evaluate the model in cartesian coordinates
:param x: input q, or [qx, qy]
:return: scattering function P(q)
"""
return CReflModel.runXY(self, x)
[docs] def evalDistribution(self, x):
"""
Evaluate the model in cartesian coordinates
:param x: input q[], or [qx[], qy[]]
:return: scattering function P(q[])
"""
return CReflModel.evalDistribution(self, x)
[docs] def calculate_ER(self):
"""
Calculate the effective radius for P(q)*S(q)
:return: the value of the effective radius
"""
return CReflModel.calculate_ER(self)
[docs] def calculate_VR(self):
"""
Calculate the volf ratio for P(q)*S(q)
:return: the value of the volf ratio
"""
return CReflModel.calculate_VR(self)
[docs] def set_dispersion(self, parameter, dispersion):
"""
Set the dispersion object for a model parameter
:param parameter: name of the parameter [string]
:param dispersion: dispersion object of type DispersionModel
"""
return CReflModel.set_dispersion(self,
parameter, dispersion.cdisp)
# End of file