sas.fit package
Submodules
sas.fit.AbstractFitEngine module
-
class
sas.fit.AbstractFitEngine.
FResult
(model=None, param_list=None, data=None)[source] Bases:
object
Storing fit result
-
print_summary
()[source]
-
set_fitness
(fitness)[source]
-
set_model
(model)[source]
-
-
exception
sas.fit.AbstractFitEngine.
FitAbort
[source] Bases:
exceptions.Exception
Exception raise to stop the fit
-
class
sas.fit.AbstractFitEngine.
FitArrange
[source] -
add_data
(data)[source] add_data fill a self.data_list with data to fit
Parameters: data – Data to add in the list
-
get_data
()[source] Returns: list of data data_list
-
get_model
()[source] Returns: saved model
-
get_to_fit
()[source] return self.selected value
-
remove_data
(data)[source] Remove one element from the list
Parameters: data – Data to remove from data_list
-
set_model
(model)[source] set_model save a copy of the model
Parameters: model – the model being set
-
set_to_fit
(value=0)[source] set self.selected to 0 or 1 for other values raise an exception
Parameters: value – integer between 0 or 1
-
-
class
sas.fit.AbstractFitEngine.
FitData1D
(x, y, dx=None, dy=None, smearer=None, data=None)[source] Bases:
sas.dataloader.data_info.Data1D
Wrapper class for SAS data FitData1D inherits from DataLoader.data_info.Data1D. Implements a way to get residuals from data.
-
get_fit_range
()[source] Return the range of data.x to fit
-
residuals
(fn)[source] Compute residuals.
If self.smearer has been set, use if to smear the data before computing chi squared.
Parameters: fn – function that return model value Returns: residuals
-
residuals_deriv
(model, pars=[])[source] Returns: residuals derivatives . Note: in this case just return empty array
-
set_fit_range
(qmin=None, qmax=None)[source] to set the fit range
-
size
()[source] Number of measurement points in data set after masking, etc.
-
-
class
sas.fit.AbstractFitEngine.
FitData2D
(sas_data2d, data=None, err_data=None)[source] Bases:
sas.dataloader.data_info.Data2D
Wrapper class for SAS data
-
get_fit_range
()[source] return the range of data.x to fit
-
residuals
(fn)[source] return the residuals
-
residuals_deriv
(model, pars=[])[source] Returns: residuals derivatives . Note: in this case just return empty array
-
set_data
(sas_data2d, qmin=None, qmax=None)[source] Determine the correct qx_data and qy_data within range to fit
-
set_fit_range
(qmin=None, qmax=None)[source] To set the fit range
-
set_smearer
(smearer)[source] Set smearer
-
size
()[source] Number of measurement points in data set after masking, etc.
-
-
class
sas.fit.AbstractFitEngine.
FitEngine
[source] -
get_model
(id)[source] Parameters: id – id is key in the dictionary containing the model to return Returns: a model at this id or None if no FitArrange element was created with this id
-
get_problem_to_fit
(id)[source] return the self.selected value of the fit problem of id
Parameters: id – the id of the problem
-
remove_fit_problem
(id)[source] remove fitarrange in id
-
select_problem_for_fit
(id, value)[source] select a couple of model and data at the id position in dictionary and set in self.selected value to value
Parameters: value – the value to allow fitting. can only have the value one or zero
-
set_data
(data, id, smearer=None, qmin=None, qmax=None)[source] Receives plottable, creates a list of data to fit,set data in a FitArrange object and adds that object in a dictionary with key id.
Parameters: - data – data added
- id – unique key corresponding to a fitArrange object with data
-
set_model
(model, id, pars=[], constraints=[], data=None)[source] set a model on a given in the fit engine.
Parameters: - model – sas.models type
- id – is the key of the fitArrange dictionary where model is saved as a value
- pars – the list of parameters to fit
- constraints – list of
tuple (name of parameter, value of parameters)
the value of parameter must be a string to constraint 2 different
parameters.
Example:
we want to fit 2 model M1 and M2 both have parameters A and B.
constraints can be
constraints = [(M1.A, M2.B+2), (M1.B= M2.A *5),...,]
Note: pars must contains only name of existing model’s parameters
-
-
class
sas.fit.AbstractFitEngine.
FitHandler
[source] Bases:
object
Abstract interface for fit thread handler.
The methods in this class are called by the optimizer as the fit progresses.
Note that it is up to the optimizer to call the fit handler correctly, reporting all status changes and maintaining the ‘done’ flag.
-
abort
()[source] Fit was aborted.
-
done
= False True when the fit job is complete
-
error
(msg)[source] Model had an error; print traceback
-
finalize
()[source] Fit is complete; best results are reported
-
improvement
()[source] Called when a result is observed which is better than previous results from the fit.
result is a FitResult object, with parameters, #calls and fitness.
-
progress
(current, expected)[source] Called each cycle of the fit, reporting the current and the expected amount of work. The meaning of these values is optimizer dependent, but they can be converted into a percent complete using (100*current)//expected.
Progress is updated each iteration of the fit, whatever that means for the particular optimization algorithm. It is called after any calls to improvement for the iteration so that the update handler can control I/O bandwidth by suppressing intermediate improvements until the fit is complete.
-
result
= None The current best result of the fit
-
set_result
(result=None)[source]
-
update_fit
(last=False)[source]
-
-
class
sas.fit.AbstractFitEngine.
Model
(sas_model, sas_data=None, **kw)[source] Fit wrapper for SAS models.
-
eval
(x)[source] Override eval method of model.
Parameters: x – the x value used to compute a function
-
eval_derivs
(x, pars=[])[source] Evaluate the model and derivatives wrt pars at x.
pars is a list of the names of the parameters for which derivatives are desired.
This method needs to be specialized in the model to evaluate the model function. Alternatively, the model can implement is own version of residuals which calculates the residuals directly instead of calling eval.
-
get_params
(fitparams)[source] return a list of value of paramter to fit
Parameters: fitparams – list of paramaters name to fit
-
set
(**kw)[source]
-
set_params
(paramlist, params)[source] Set value for parameters to fit
Parameters: params – list of value for parameters to fit
-
sas.fit.BumpsFitting module
BumpsFitting module runs the bumps optimizer.
-
class
sas.fit.BumpsFitting.
BumpsFit
[source] Bases:
sas.fit.AbstractFitEngine.FitEngine
Fit a model using bumps.
-
fit
(msg_q=None, q=None, handler=None, curr_thread=None, ftol=1.49012e-08, reset_flag=False)[source]
-
-
class
sas.fit.BumpsFitting.
BumpsMonitor
(handler, max_step, pars, dof)[source] Bases:
object
-
config_history
(history)[source]
-
-
class
sas.fit.BumpsFitting.
ConvergenceMonitor
[source] Bases:
object
ConvergenceMonitor contains population summary statistics to show progress of the fit. This is a list [ (best, 0%, 25%, 50%, 75%, 100%) ] or just a list [ (best, ) ] if population size is 1.
-
config_history
(history)[source]
-
-
class
sas.fit.BumpsFitting.
ParameterExpressions
(models)[source] Bases:
object
-
class
sas.fit.BumpsFitting.
Progress
(history, max_step, pars, dof)[source] Bases:
object
-
class
sas.fit.BumpsFitting.
SasFitness
(model, data, fitted=[], constraints={}, initial_values=None, **kw)[source] Bases:
object
Wrap SAS model as a bumps fitness object
-
nllf
()[source]
-
numpoints
()[source]
-
parameters
()[source]
-
residuals
()[source]
-
set_fitted
(param_list)[source] Flag a set of parameters as fitted parameters.
-
theory
()[source]
-
update
()[source]
-
-
sas.fit.BumpsFitting.
get_fitter
()[source]
-
sas.fit.BumpsFitting.
run_bumps
(problem, handler, curr_thread)[source]
sas.fit.Loader module
-
class
sas.fit.Loader.
Load
(x=None, y=None, dx=None, dy=None)[source] This class is loading values from given file or value giving by the user
-
get_filename
()[source] return the file’s path
-
get_values
()[source] Return x, y, dx, dy
-
load_data
(data)[source] Return plottable
-
set_filename
(path=None)[source] Store path into a variable.If the user doesn’t give a path as a parameter a pop-up window appears to select the file.
Parameters: path – the path given by the user
-
set_values
()[source] Store the values loaded from file in local variables
-
sas.fit.expression module
Parameter expression evaluator.
For systems in which constraints are expressed as string expressions rather
than python code, compile_constraints()
can construct an expression
evaluator that substitutes the computed values of the expressions into the
parameters.
The compiler requires a symbol table, an expression set and a context. The symbol table maps strings containing fully qualified names such as ‘M1.c[3].full_width’ to parameter objects with a ‘value’ property that can be queried and set. The expression set maps symbol names from the symbol table to string expressions. The context provides additional symbols for the expressions in addition to the usual mathematical functions and constants.
The expressions are compiled and interpreted by python, with only minimal effort to make sure that they don’t contain bad code. The resulting constraints function returns 0 so it can be used directly in a fit problem definition.
Extracting the symbol table from the model depends on the structure of the model. If fitness.parameters() is set correctly, then this should simply be a matter of walking the parameter data, remembering the path to each parameter in the symbol table. For compactness, dictionary elements should be referenced by .name rather than [“name”]. Model name can be used as the top level.
Getting the parameter expressions applied correctly is challenging. The following monkey patch works by overriding model_update in FitProblem so that after setp(p) is called and, the constraints expression can be applied before telling the underlying fitness function that the model is out of date:
# Override model update so that parameter constraints are applied
problem._model_update = problem.model_update
def model_update():
constraints()
problem._model_update()
problem.model_update = model_update
Ideally, this interface will change
-
sas.fit.expression.
compile_constraints
(symtab, exprs, context={})[source] Build and return a function to evaluate all parameter expressions in the proper order.
Input:
symtab is the symbol table for the model: { ‘name’: parameter }
exprs is the set of computed symbols: { ‘name’: ‘expression’ }
context is any additional context needed to evaluate the expression
Return:
updater function which sets parameter.value for each expressionRaises:
AssertionError - model, parameter or function is missing
SyntaxError - improper expression syntax
ValueError - expressions have circular dependencies
This function is not terribly sophisticated, and it would be easy to trick. However it handles the common cases cleanly and generates reasonable messages for the common errors.
This code has not been fully audited for security. While we have removed the builtins and the ability to import modules, there may be other vectors for users to perform more than simple function evaluations. Unauthenticated users should not be running this code.
Parameter names are assumed to contain only _.a-zA-Z0-9#[]
Both names are provided for inverse functions, e.g., acos and arccos.
Should try running the function to identify syntax errors before running it in a fit.
Use help(fn) to see the code generated for the returned function fn. dis.dis(fn) will show the corresponding python vm instructions.
-
sas.fit.expression.
no_constraints
()[source] This parameter set has no constraints between the parameters.
-
sas.fit.expression.
order_dependencies
(pairs)[source] Order elements from pairs so that b comes before a in the ordered list for all pairs (a,b).
-
sas.fit.expression.
test_deps
()[source]
-
sas.fit.expression.
test_expr
()[source]