sas.sascalc.fit package
Submodules
sas.sascalc.fit.AbstractFitEngine module
- class sas.sascalc.fit.AbstractFitEngine.FResult(model=None, param_list=None, data=None)[source]
Bases:
object
Storing fit result
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.AbstractFitEngine', '__doc__': '\n Storing fit result\n ', '__init__': <function FResult.__init__>, 'set_model': <function FResult.set_model>, 'set_fitness': <function FResult.set_fitness>, '__str__': <function FResult.__str__>, 'print_summary': <function FResult.print_summary>, '__dict__': <attribute '__dict__' of 'FResult' objects>, '__weakref__': <attribute '__weakref__' of 'FResult' objects>, '__annotations__': {}})
- __doc__ = '\n Storing fit result\n '
- __init__(model=None, param_list=None, data=None)[source]
- __module__ = 'sas.sascalc.fit.AbstractFitEngine'
- __str__()[source]
- __weakref__
list of weak references to the object (if defined)
- print_summary()[source]
- set_fitness(fitness)[source]
- set_model(model)[source]
- exception sas.sascalc.fit.AbstractFitEngine.FitAbort[source]
Bases:
Exception
Exception raise to stop the fit
- __doc__ = '\n Exception raise to stop the fit\n '
- __module__ = 'sas.sascalc.fit.AbstractFitEngine'
- __weakref__
list of weak references to the object (if defined)
- class sas.sascalc.fit.AbstractFitEngine.FitArrange[source]
Bases:
object
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.AbstractFitEngine', '__init__': <function FitArrange.__init__>, 'set_model': <function FitArrange.set_model>, 'add_data': <function FitArrange.add_data>, 'get_model': <function FitArrange.get_model>, 'get_data': <function FitArrange.get_data>, 'remove_data': <function FitArrange.remove_data>, 'set_to_fit': <function FitArrange.set_to_fit>, 'get_to_fit': <function FitArrange.get_to_fit>, '__dict__': <attribute '__dict__' of 'FitArrange' objects>, '__weakref__': <attribute '__weakref__' of 'FitArrange' objects>, '__doc__': None, '__annotations__': {}})
- __doc__ = None
- __init__()[source]
Class FitArrange contains a set of data for a given model to perform the Fit.FitArrange must contain exactly one model and at least one data for the fit to be performed.
model: the model selected by the user Ldata: a list of data what the user wants to fit
- __module__ = 'sas.sascalc.fit.AbstractFitEngine'
- __weakref__
list of weak references to the object (if defined)
- add_data(data)[source]
add_data fill a self.data_list with data to fit
- Parameters:
data – Data to add in the list
- get_data()[source]
- Returns:
list of data data_list
- get_model()[source]
- Returns:
saved model
- get_to_fit()[source]
return self.selected value
- remove_data(data)[source]
Remove one element from the list
- Parameters:
data – Data to remove from data_list
- set_model(model)[source]
set_model save a copy of the model
- Parameters:
model – the model being set
- set_to_fit(value=0)[source]
set self.selected to 0 or 1 for other values raise an exception
- Parameters:
value – integer between 0 or 1
- class sas.sascalc.fit.AbstractFitEngine.FitData1D(x, y, dx=None, dy=None, smearer=None, data=None, lam=None, dlam=None)[source]
Bases:
Data1D
Wrapper class for SAS data FitData1D inherits from DataLoader.data_info.Data1D. Implements a way to get residuals from data.
- __doc__ = '\n Wrapper class for SAS data\n FitData1D inherits from DataLoader.data_info.Data1D. Implements\n a way to get residuals from data.\n '
- __init__(x, y, dx=None, dy=None, smearer=None, data=None, lam=None, dlam=None)[source]
- Parameters:
smearer – is an object of class QSmearer or SlitSmearer that will smear the theory data (slit smearing or resolution smearing) when set.
The proper way to set the smearing object would be to do the following:
from sas.sascalc.fit.qsmearing import smear_selection smearer = smear_selection(some_data) fitdata1d = FitData1D( x= [1,3,..,], y= [3,4,..,8], dx=None, dy=[1,2...], smearer= smearer)
- Note:
that some_data _HAS_ to be of class DataLoader.data_info.Data1D Setting it back to None will turn smearing off.
- __module__ = 'sas.sascalc.fit.AbstractFitEngine'
- get_fit_range()[source]
Return the range of data.x to fit
- residuals(fn)[source]
Compute residuals.
If self.smearer has been set, use if to smear the data before computing chi squared.
- Parameters:
fn – function that return model value
- Returns:
residuals
- residuals_deriv(model, pars=[])[source]
- Returns:
residuals derivatives .
- Note:
in this case just return empty array
- set_fit_range(qmin=None, qmax=None)[source]
to set the fit range
- size()[source]
Number of measurement points in data set after masking, etc.
- class sas.sascalc.fit.AbstractFitEngine.FitData2D(sas_data2d, data=None, err_data=None)[source]
Bases:
Data2D
Wrapper class for SAS data
- __doc__ = '\n Wrapper class for SAS data\n '
- __init__(sas_data2d, data=None, err_data=None)[source]
Initialization
- __module__ = 'sas.sascalc.fit.AbstractFitEngine'
- get_fit_range()[source]
return the range of data.x to fit
- residuals(fn)[source]
return the residuals
- residuals_deriv(model, pars=[])[source]
- Returns:
residuals derivatives .
- Note:
in this case just return empty array
- set_data(sas_data2d, qmin=None, qmax=None)[source]
Determine the correct qx_data and qy_data within range to fit
- set_fit_range(qmin=None, qmax=None)[source]
To set the fit range
- set_smearer(smearer)[source]
Set smearer
- size()[source]
Number of measurement points in data set after masking, etc.
- class sas.sascalc.fit.AbstractFitEngine.FitEngine[source]
Bases:
object
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.AbstractFitEngine', '__init__': <function FitEngine.__init__>, 'set_model': <function FitEngine.set_model>, 'set_data': <function FitEngine.set_data>, 'get_model': <function FitEngine.get_model>, 'remove_fit_problem': <function FitEngine.remove_fit_problem>, 'select_problem_for_fit': <function FitEngine.select_problem_for_fit>, 'get_problem_to_fit': <function FitEngine.get_problem_to_fit>, '__dict__': <attribute '__dict__' of 'FitEngine' objects>, '__weakref__': <attribute '__weakref__' of 'FitEngine' objects>, '__doc__': None, '__annotations__': {}})
- __doc__ = None
- __init__()[source]
Base class for the fit engine
- __module__ = 'sas.sascalc.fit.AbstractFitEngine'
- __weakref__
list of weak references to the object (if defined)
- get_model(id)[source]
- Parameters:
id – id is key in the dictionary containing the model to return
- Returns:
a model at this id or None if no FitArrange element was created with this id
- get_problem_to_fit(id)[source]
return the self.selected value of the fit problem of id
- Parameters:
id – the id of the problem
- remove_fit_problem(id)[source]
remove fitarrange in id
- select_problem_for_fit(id, value)[source]
select a couple of model and data at the id position in dictionary and set in self.selected value to value
- Parameters:
value – the value to allow fitting. can only have the value one or zero
- set_data(data, id, smearer=None, qmin=None, qmax=None)[source]
Receives plottable, creates a list of data to fit,set data in a FitArrange object and adds that object in a dictionary with key id.
- Parameters:
data – data added
id – unique key corresponding to a fitArrange object with data
- set_model(model, id, pars=[], constraints=[], data=None)[source]
set a model on a given in the fit engine.
- Parameters:
model – sas.models type
id – is the key of the fitArrange dictionary where model is saved as a value
pars – the list of parameters to fit
constraints – list of tuple (name of parameter, value of parameters) the value of parameter must be a string to constraint 2 different parameters. Example: we want to fit 2 model M1 and M2 both have parameters A and B. constraints can be
constraints = [(M1.A, M2.B+2), (M1.B= M2.A *5),...,]
- Note:
pars must contains only name of existing model’s parameters
- class sas.sascalc.fit.AbstractFitEngine.FitHandler[source]
Bases:
object
Abstract interface for fit thread handler.
The methods in this class are called by the optimizer as the fit progresses.
Note that it is up to the optimizer to call the fit handler correctly, reporting all status changes and maintaining the ‘done’ flag.
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.AbstractFitEngine', '__doc__': "\n Abstract interface for fit thread handler.\n\n The methods in this class are called by the optimizer as the fit\n progresses.\n\n Note that it is up to the optimizer to call the fit handler correctly,\n reporting all status changes and maintaining the 'done' flag.\n ", 'done': False, 'result': None, 'improvement': <function FitHandler.improvement>, 'error': <function FitHandler.error>, 'progress': <function FitHandler.progress>, 'finalize': <function FitHandler.finalize>, 'abort': <function FitHandler.abort>, 'update_fit': <function FitHandler.update_fit>, 'set_result': <function FitHandler.set_result>, '__dict__': <attribute '__dict__' of 'FitHandler' objects>, '__weakref__': <attribute '__weakref__' of 'FitHandler' objects>, '__annotations__': {}})
- __doc__ = "\n Abstract interface for fit thread handler.\n\n The methods in this class are called by the optimizer as the fit\n progresses.\n\n Note that it is up to the optimizer to call the fit handler correctly,\n reporting all status changes and maintaining the 'done' flag.\n "
- __module__ = 'sas.sascalc.fit.AbstractFitEngine'
- __weakref__
list of weak references to the object (if defined)
- abort()[source]
Fit was aborted.
- done = False
True when the fit job is complete
- error(msg)[source]
Model had an error; print traceback
- finalize()[source]
Fit is complete; best results are reported
- improvement()[source]
Called when a result is observed which is better than previous results from the fit.
result is a FitResult object, with parameters, #calls and fitness.
- progress(current, expected)[source]
Called each cycle of the fit, reporting the current and the expected amount of work. The meaning of these values is optimizer dependent, but they can be converted into a percent complete using (100*current)//expected.
Progress is updated each iteration of the fit, whatever that means for the particular optimization algorithm. It is called after any calls to improvement for the iteration so that the update handler can control I/O bandwidth by suppressing intermediate improvements until the fit is complete.
- result = None
The current best result of the fit
- set_result(result=None)[source]
- update_fit(last=False)[source]
- class sas.sascalc.fit.AbstractFitEngine.Model(sas_model, sas_data=None, **kw)[source]
Bases:
object
Fit wrapper for SAS models.
- __call__(x)[source]
Call self as a function.
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.AbstractFitEngine', '__doc__': '\n Fit wrapper for SAS models.\n ', '__init__': <function Model.__init__>, 'get_params': <function Model.get_params>, 'set_params': <function Model.set_params>, 'set': <function Model.set>, 'eval': <function Model.eval>, 'eval_derivs': <function Model.eval_derivs>, '__call__': <function Model.__call__>, '__dict__': <attribute '__dict__' of 'Model' objects>, '__weakref__': <attribute '__weakref__' of 'Model' objects>, '__annotations__': {}})
- __doc__ = '\n Fit wrapper for SAS models.\n '
- __init__(sas_model, sas_data=None, **kw)[source]
- Parameters:
sas_model – the sas model to wrap for fitting
- __module__ = 'sas.sascalc.fit.AbstractFitEngine'
- __weakref__
list of weak references to the object (if defined)
- eval(x)[source]
Override eval method of model.
- Parameters:
x – the x value used to compute a function
- eval_derivs(x, pars=[])[source]
Evaluate the model and derivatives wrt pars at x.
pars is a list of the names of the parameters for which derivatives are desired.
This method needs to be specialized in the model to evaluate the model function. Alternatively, the model can implement is own version of residuals which calculates the residuals directly instead of calling eval.
- get_params(fitparams)[source]
return a list of value of parameter to fit
- Parameters:
fitparams – list of parameters name to fit
- set(**kw)[source]
- set_params(paramlist, params)[source]
Set value for parameters to fit
- Parameters:
params – list of value for parameters to fit
sas.sascalc.fit.BumpsFitting module
BumpsFitting module runs the bumps optimizer.
- class sas.sascalc.fit.BumpsFitting.BumpsFit[source]
Bases:
FitEngine
Fit a model using bumps.
- __doc__ = '\n Fit a model using bumps.\n '
- __init__()[source]
Creates a dictionary (self.fit_arrange_dict={})of FitArrange elements with Uid as keys
- __module__ = 'sas.sascalc.fit.BumpsFitting'
- fit(msg_q=None, q=None, handler=None, curr_thread=None, ftol=1.49012e-08, reset_flag=False)[source]
- class sas.sascalc.fit.BumpsFitting.BumpsMonitor(handler, max_step, pars, dof)[source]
Bases:
object
- __call__(history)[source]
Call self as a function.
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.BumpsFitting', '__init__': <function BumpsMonitor.__init__>, 'config_history': <function BumpsMonitor.config_history>, '__call__': <function BumpsMonitor.__call__>, '__dict__': <attribute '__dict__' of 'BumpsMonitor' objects>, '__weakref__': <attribute '__weakref__' of 'BumpsMonitor' objects>, '__doc__': None, '__annotations__': {}})
- __doc__ = None
- __init__(handler, max_step, pars, dof)[source]
- __module__ = 'sas.sascalc.fit.BumpsFitting'
- __weakref__
list of weak references to the object (if defined)
- config_history(history)[source]
- class sas.sascalc.fit.BumpsFitting.ConvergenceMonitor[source]
Bases:
object
ConvergenceMonitor contains population summary statistics to show progress of the fit. This is a list [ (best, 0%, 25%, 50%, 75%, 100%) ] or just a list [ (best, ) ] if population size is 1.
- __call__(history)[source]
Call self as a function.
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.BumpsFitting', '__doc__': '\n ConvergenceMonitor contains population summary statistics to show progress\n of the fit. This is a list [ (best, 0%, 25%, 50%, 75%, 100%) ] or\n just a list [ (best, ) ] if population size is 1.\n ', '__init__': <function ConvergenceMonitor.__init__>, 'config_history': <function ConvergenceMonitor.config_history>, '__call__': <function ConvergenceMonitor.__call__>, '__dict__': <attribute '__dict__' of 'ConvergenceMonitor' objects>, '__weakref__': <attribute '__weakref__' of 'ConvergenceMonitor' objects>, '__annotations__': {}})
- __doc__ = '\n ConvergenceMonitor contains population summary statistics to show progress\n of the fit. This is a list [ (best, 0%, 25%, 50%, 75%, 100%) ] or\n just a list [ (best, ) ] if population size is 1.\n '
- __init__()[source]
- __module__ = 'sas.sascalc.fit.BumpsFitting'
- __weakref__
list of weak references to the object (if defined)
- config_history(history)[source]
- class sas.sascalc.fit.BumpsFitting.ParameterExpressions(models)[source]
Bases:
object
- __call__()[source]
Call self as a function.
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.BumpsFitting', '__init__': <function ParameterExpressions.__init__>, '_setup': <function ParameterExpressions._setup>, '__call__': <function ParameterExpressions.__call__>, '__getstate__': <function ParameterExpressions.__getstate__>, '__setstate__': <function ParameterExpressions.__setstate__>, '__dict__': <attribute '__dict__' of 'ParameterExpressions' objects>, '__weakref__': <attribute '__weakref__' of 'ParameterExpressions' objects>, '__doc__': None, '__annotations__': {}})
- __doc__ = None
- __getstate__()[source]
- __init__(models)[source]
- __module__ = 'sas.sascalc.fit.BumpsFitting'
- __setstate__(state)[source]
- __weakref__
list of weak references to the object (if defined)
- _setup()[source]
- class sas.sascalc.fit.BumpsFitting.Progress(history, max_step, pars, dof)[source]
Bases:
object
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.BumpsFitting', '__init__': <function Progress.__init__>, '__str__': <function Progress.__str__>, '__dict__': <attribute '__dict__' of 'Progress' objects>, '__weakref__': <attribute '__weakref__' of 'Progress' objects>, '__doc__': None, '__annotations__': {}})
- __doc__ = None
- __init__(history, max_step, pars, dof)[source]
- __module__ = 'sas.sascalc.fit.BumpsFitting'
- __str__()[source]
Return str(self).
- __weakref__
list of weak references to the object (if defined)
- class sas.sascalc.fit.BumpsFitting.SasFitness(model, data, fitted=[], constraints={}, initial_values=None, **kw)[source]
Bases:
object
Wrap SAS model as a bumps fitness object
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.BumpsFitting', '__doc__': '\n Wrap SAS model as a bumps fitness object\n ', '__init__': <function SasFitness.__init__>, '_reset_pars': <function SasFitness._reset_pars>, '_define_pars': <function SasFitness._define_pars>, '_init_pars': <function SasFitness._init_pars>, 'set_fitted': <function SasFitness.set_fitted>, 'parameters': <function SasFitness.parameters>, 'update': <function SasFitness.update>, '_recalculate': <function SasFitness._recalculate>, 'numpoints': <function SasFitness.numpoints>, 'nllf': <function SasFitness.nllf>, 'theory': <function SasFitness.theory>, 'residuals': <function SasFitness.residuals>, '__dict__': <attribute '__dict__' of 'SasFitness' objects>, '__weakref__': <attribute '__weakref__' of 'SasFitness' objects>, '__annotations__': {}})
- __doc__ = '\n Wrap SAS model as a bumps fitness object\n '
- __init__(model, data, fitted=[], constraints={}, initial_values=None, **kw)[source]
- __module__ = 'sas.sascalc.fit.BumpsFitting'
- __weakref__
list of weak references to the object (if defined)
- _define_pars()[source]
- _init_pars(kw)[source]
- _recalculate()[source]
- _reset_pars(names, values)[source]
- nllf()[source]
- numpoints()[source]
- parameters()[source]
- residuals()[source]
- set_fitted(param_list)[source]
Flag a set of parameters as fitted parameters.
- theory()[source]
- update()[source]
- sas.sascalc.fit.BumpsFitting.get_fitter()[source]
- sas.sascalc.fit.BumpsFitting.run_bumps(problem, handler, curr_thread)[source]
sas.sascalc.fit.Loader module
- class sas.sascalc.fit.Loader.Load(x=None, y=None, dx=None, dy=None)[source]
Bases:
object
This class is loading values from given file or value giving by the user
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.Loader', '__doc__': '\n This class is loading values from given file or value giving by the user\n ', '__init__': <function Load.__init__>, 'set_filename': <function Load.set_filename>, 'get_filename': <function Load.get_filename>, 'set_values': <function Load.set_values>, 'get_values': <function Load.get_values>, 'load_data': <function Load.load_data>, '__dict__': <attribute '__dict__' of 'Load' objects>, '__weakref__': <attribute '__weakref__' of 'Load' objects>, '__annotations__': {}})
- __doc__ = '\n This class is loading values from given file or value giving by the user\n '
- __init__(x=None, y=None, dx=None, dy=None)[source]
- __module__ = 'sas.sascalc.fit.Loader'
- __weakref__
list of weak references to the object (if defined)
- get_filename()[source]
return the file’s path
- get_values()[source]
Return x, y, dx, dy
- load_data(data)[source]
Return plottable
- set_filename(path=None)[source]
Store path into a variable.If the user doesn’t give a path as a parameter a pop-up window appears to select the file.
- Parameters:
path – the path given by the user
- set_values()[source]
Store the values loaded from file in local variables
sas.sascalc.fit.MultiplicationModel module
- class sas.sascalc.fit.MultiplicationModel.MultiplicationModel(p_model, s_model)[source]
Bases:
BaseComponent
Use for P(Q)*S(Q); function call must be in the order of P(Q) and then S(Q): The model parameters are combined from both models, P(Q) and S(Q), except 1) ‘radius_effective’ of S(Q) which will be calculated from P(Q) via calculate_ER(), and 2) ‘scale’ in P model which is synchronized w/ volfraction in S then P*S is multiplied by a new parameter, ‘scale_factor’. The polydispersion is applicable only to P(Q), not to S(Q).
Note
P(Q) refers to ‘form factor’ model while S(Q) does to ‘structure factor’.
- __doc__ = "\n Use for P(Q)\\*S(Q); function call must be in the order of P(Q) and then S(Q):\n The model parameters are combined from both models, P(Q) and S(Q), except 1) 'radius_effective' of S(Q)\n which will be calculated from P(Q) via calculate_ER(),\n and 2) 'scale' in P model which is synchronized w/ volfraction in S\n then P*S is multiplied by a new parameter, 'scale_factor'.\n The polydispersion is applicable only to P(Q), not to S(Q).\n\n .. note:: P(Q) refers to 'form factor' model while S(Q) does to 'structure factor'.\n "
- __init__(p_model, s_model)[source]
Initialization
- __module__ = 'sas.sascalc.fit.MultiplicationModel'
- _clone(obj)[source]
Internal utility function to copy the internal data members to a fresh copy.
- _setParamHelper(name, value)[source]
Helper function to setparam
- _set_backgrounds()[source]
Set component backgrounds to zero
- _set_details()[source]
Concatenate details of the two models to create this model’s details
- _set_dispersion()[source]
combine the two models’ dispersions. Polydispersity should not be applied to s_model
- _set_fixed_params()[source]
Fill the self.fixed list with the p_model fixed list
- _set_params()[source]
Concatenate the parameters of the two models to create these model parameters
- _set_radius_effective()[source]
Set effective radius to S(Q) model
- _set_scale_factor()[source]
Set scale=volfraction for P model
- evalDistribution(x=[])[source]
Evaluate the model in cartesian coordinates
- Parameters:
x – input q[], or [qx[], qy[]]
- Returns:
scattering function P(q[])
- fill_description(p_model, s_model)[source]
Fill the description for P(Q)*S(Q)
- getProfile()[source]
Get SLD profile of p_model if exists
- Returns:
(r, beta) where r is a list of radius of the transition points beta is a list of the corresponding SLD values
Note
This works only for func_shell num = 2 (exp function).
- run(x=0.0)[source]
Evaluate the model
- Parameters:
x – input q-value (float or [float, float] as [r, theta])
- Returns:
(scattering function value)
- runXY(x=0.0)[source]
Evaluate the model
- Parameters:
x – input q-value (float or [float, float] as [qx, qy])
- Returns:
scattering function value
- setParam(name, value)[source]
Set the value of a model parameter
- Parameters:
name – name of the parameter
value – value of the parameter
- set_dispersion(parameter, dispersion)[source]
Set the dispersion object for a model parameter
- Parameters:
parameter – name of the parameter [string]
- Dispersion:
dispersion object of type DispersionModel
sas.sascalc.fit.expression module
Parameter expression evaluator.
For systems in which constraints are expressed as string expressions rather
than python code, compile_constraints()
can construct an expression
evaluator that substitutes the computed values of the expressions into the
parameters.
The compiler requires a symbol table, an expression set and a context. The symbol table maps strings containing fully qualified names such as ‘M1.c[3].full_width’ to parameter objects with a ‘value’ property that can be queried and set. The expression set maps symbol names from the symbol table to string expressions. The context provides additional symbols for the expressions in addition to the usual mathematical functions and constants.
The expressions are compiled and interpreted by python, with only minimal effort to make sure that they don’t contain bad code. The resulting constraints function returns 0 so it can be used directly in a fit problem definition.
Extracting the symbol table from the model depends on the structure of the model. If fitness.parameters() is set correctly, then this should simply be a matter of walking the parameter data, remembering the path to each parameter in the symbol table. For compactness, dictionary elements should be referenced by .name rather than [“name”]. Model name can be used as the top level.
Getting the parameter expressions applied correctly is challenging. The following monkey patch works by overriding model_update in FitProblem so that after setp(p) is called and, the constraints expression can be applied before telling the underlying fitness function that the model is out of date:
# Override model update so that parameter constraints are applied
problem._model_update = problem.model_update
def model_update():
constraints()
problem._model_update()
problem.model_update = model_update
Ideally, this interface will change
- class sas.sascalc.fit.expression._Parameter(value=0)[source]
Bases:
object
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.expression', '__init__': <function _Parameter.__init__>, '__dict__': <attribute '__dict__' of '_Parameter' objects>, '__weakref__': <attribute '__weakref__' of '_Parameter' objects>, '__doc__': None, '__annotations__': {}})
- __doc__ = None
- __init__(value=0)[source]
- __module__ = 'sas.sascalc.fit.expression'
- __weakref__
list of weak references to the object (if defined)
- sas.sascalc.fit.expression._check(msg, pairs)[source]
Verify that the list n contains the given items, and that the list satisfies the partial ordering given by the pairs in partial order.
- sas.sascalc.fit.expression._check_free_variables(target, expr, symbol_table, html=False)[source]
- sas.sascalc.fit.expression._check_syntax(target, expr, html=False)[source]
- sas.sascalc.fit.expression._compile_constraints(symtab, exprs, context={}, html=False)[source]
- sas.sascalc.fit.expression._dependent_symbols(expr, symtab)[source]
Given an expression string and a symbol table, return the set of symbols used in the expression. Symbols are only returned once even if they occur multiple times. The return value is a set with the elements in no particular order. Returns a set containing None if no dependencies (as needed by order_dependencies).
This is the first step in computing a dependency graph.
- sas.sascalc.fit.expression._find_dependencies(symtab, exprs)[source]
Returns a list of pair-wise dependencies from the parameter expressions.
symtab gives the {‘parameter’: value} table of available parameters.
exprs gives the {‘parameter’: ‘expr’} table of parameter expressions.
For example, if p3 = p1+p2, then find_dependencies([p1, p2, p3]) will return [(‘p3’, ‘p1’), (‘p3’, ‘p2’)]. For base expressions without dependencies, such as p4 = 2*pi, this should return [(‘p4’, None)].
- sas.sascalc.fit.expression._parameter_mapping(pairs)[source]
Find the parameter substitution we need so that expressions can be evaluated without having to traverse a chain of model.layer.parameter.value
- sas.sascalc.fit.expression._substitute(expr, mapping)[source]
Replace all occurrences of symbol s with mapping[s] for s in mapping.
- sas.sascalc.fit.expression._symbols(expr)[source]
- sas.sascalc.fit.expression.check_constraints(symtab, exprs, context={}, html=False)[source]
Returns a list of errors in exprs or the empty list if there are none. If the html flag is set to True, the list elements will have html <b> markups that allow the caller to control rendering:
Unknown symbol: tags unknown symbols in exprs Syntax error: tags the beginning of a syntax error in exprs Cyclic dependency: tags comma separated parameters that have cyclic dependency
All symbols must exist in context or in symtab. The symbols in context should be constants or functions. The symbols in symtab can be constants or parameter objects with a value attribute.
It first runs
compile_constraints()
, returning a list of errors if any. If there are no errors it runs the compiled constraints function, returning any errors it produces. Any parameters in symtab are copied with a shallow copy so they aren’t overridden when the constraints are run.
- sas.sascalc.fit.expression.compile_constraints(symtab, exprs, context={})[source]
Build and return a function to evaluate all parameter expressions in the proper order.
Input:
symtab is the symbol table for the model: { ‘name’: parameter }
exprs is the set of computed symbols: { ‘name’: ‘expression’ }
context is any additional context needed to evaluate the expression
Return:
updater function which sets parameter.value for each expression
Raises:
RunTimeError if any expression contains a syntax error, if any symbol used is not defined, or if there are circular dependencies between symbols. Runtime error argument is a string describing all found errors.
This function is not terribly sophisticated, and it would be easy to trick. However it handles the common cases cleanly and generates reasonable messages for the common errors.
This code has not been fully audited for security. While we have removed the builtins and the ability to import modules, there may be other vectors for users to perform more than simple function evaluations. Unauthenticated users should not be running this code.
Parameter names are assumed to contain only _.a-zA-Z0-9#[]
Both names are provided for inverse functions, e.g., acos and arccos.
Should try running the function to identify syntax errors before running it in a fit.
Use help(fn) to see the code generated for the returned function fn. dis.dis(fn) will show the corresponding python vm instructions.
- sas.sascalc.fit.expression.iskeyword()
x.__contains__(y) <==> y in x.
- sas.sascalc.fit.expression.no_constraints()[source]
This parameter set has no constraints between the parameters.
- sas.sascalc.fit.expression.order_dependencies(pairs)[source]
Order elements from pairs so that b comes before a in the ordered list for all pairs (a, b).
- sas.sascalc.fit.expression.standard_symbols(context={})[source]
- sas.sascalc.fit.expression.test_deps()[source]
- sas.sascalc.fit.expression.test_expr()[source]
sas.sascalc.fit.models module
Utilities to manage models
- class sas.sascalc.fit.models.ModelManager[source]
Bases:
object
manage the list of available models
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.models', '__doc__': '\n manage the list of available models\n ', 'base': None, '__init__': <function ModelManager.__init__>, 'cat_model_list': <function ModelManager.cat_model_list>, 'update': <function ModelManager.update>, 'plugins_reset': <function ModelManager.plugins_reset>, 'get_model_list': <function ModelManager.get_model_list>, 'composable_models': <function ModelManager.composable_models>, 'get_model_dictionary': <function ModelManager.get_model_dictionary>, '__dict__': <attribute '__dict__' of 'ModelManager' objects>, '__weakref__': <attribute '__weakref__' of 'ModelManager' objects>, '__annotations__': {'base': 'ModelManagerBase()'}})
- __doc__ = '\n manage the list of available models\n '
- __init__()[source]
- __module__ = 'sas.sascalc.fit.models'
- __weakref__
list of weak references to the object (if defined)
- base: ModelManagerBase() = None
- cat_model_list()[source]
- composable_models()[source]
- get_model_dictionary()[source]
- get_model_list()[source]
- plugins_reset()[source]
- update()[source]
- class sas.sascalc.fit.models.ModelManagerBase[source]
Bases:
object
Base class for the model manager
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.models', '__doc__': '\n Base class for the model manager\n ', 'model_dictionary': None, 'standard_models': None, 'plugin_models': None, 'last_time_dir_modified': 0, '__init__': <function ModelManagerBase.__init__>, '_is_plugin_dir_changed': <function ModelManagerBase._is_plugin_dir_changed>, 'composable_models': <function ModelManagerBase.composable_models>, 'plugins_update': <function ModelManagerBase.plugins_update>, 'plugins_reset': <function ModelManagerBase.plugins_reset>, 'get_model_list': <function ModelManagerBase.get_model_list>, '__dict__': <attribute '__dict__' of 'ModelManagerBase' objects>, '__weakref__': <attribute '__weakref__' of 'ModelManagerBase' objects>, '__annotations__': {'model_dictionary': 'Dict[str, Model]', 'standard_models': 'Dict[str, Model]', 'plugin_models': 'Dict[str, Model]', 'last_time_dir_modified': 'int'}})
- __doc__ = '\n Base class for the model manager\n '
- __init__()[source]
- __module__ = 'sas.sascalc.fit.models'
- __weakref__
list of weak references to the object (if defined)
- _is_plugin_dir_changed()[source]
check the last time the plugin dir has changed and return true is the directory was modified else return false
- composable_models()[source]
return list of standard models that can be used in sum/multiply
- get_model_list()[source]
return dictionary of classified models
Structure Factors are the structure factor models Multi-Functions are the multiplicity models Plugin Models are the plugin models
Note that a model can be both a plugin and a structure factor or multiplicity model.
- last_time_dir_modified: int = 0
timestamp on the plugin directory at the last plugin update
- model_dictionary: Dict[str, Model] = None
mutable dictionary of models, continually updated to reflect the current set of plugins
- plugin_models: Dict[str, Model] = None
list of plugin models reset each time the plugin directory is queried
- plugins_reset()[source]
return a dictionary of model
- plugins_update()[source]
return a dictionary of model if new models were added else return empty dictionary
- standard_models: Dict[str, Model] = None
constant list of standard models
- class sas.sascalc.fit.models.ReportProblem[source]
Bases:
object
Class to check for problems with specific values
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.models', '__doc__': '\n Class to check for problems with specific values\n ', '__nonzero__': <function ReportProblem.__nonzero__>, '__dict__': <attribute '__dict__' of 'ReportProblem' objects>, '__weakref__': <attribute '__weakref__' of 'ReportProblem' objects>, '__annotations__': {}})
- __doc__ = '\n Class to check for problems with specific values\n '
- __module__ = 'sas.sascalc.fit.models'
- __nonzero__()[source]
- __weakref__
list of weak references to the object (if defined)
- sas.sascalc.fit.models._check_plugin(model, name)[source]
Do some checking before model adding plugins in the list
- Parameters:
model – class model to add into the plugin list
:param name:name of the module plugin
- Return model:
model if valid model or None if not valid
- sas.sascalc.fit.models.compile_file(dir)[source]
Compile a py file
- sas.sascalc.fit.models.find_plugin_models()[source]
Find custom models
- sas.sascalc.fit.models.find_plugins_dir()[source]
Find path of the plugins directory. The plugin directory is located in the user’s home directory.
- sas.sascalc.fit.models.initialize_plugins_dir(path)[source]
- sas.sascalc.fit.models.plugin_log(message)[source]
Log a message in a file located in the user’s home directory
sas.sascalc.fit.pagestate module
Class that holds a fit page state
- class sas.sascalc.fit.pagestate.PageState(model=None, data=None)[source]
Bases:
object
Contains information to reconstruct a page of the fitpanel.
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.pagestate', '__doc__': '\n Contains information to reconstruct a page of the fitpanel.\n ', '__init__': <function PageState.__init__>, 'clone': <function PageState.clone>, '_old_first_model': <function PageState._old_first_model>, 'param_remap_to_sasmodels_convert': <staticmethod object>, 'param_remap_from_sasmodels_convert': <staticmethod object>, '_convert_to_sasmodels': <function PageState._convert_to_sasmodels>, '_repr_helper': <function PageState._repr_helper>, '__repr__': <function PageState.__repr__>, '_get_report_string': <function PageState._get_report_string>, '_check_html_format': <function PageState._check_html_format>, 'report': <function PageState.report>, '_to_xml_helper': <function PageState._to_xml_helper>, 'to_xml': <function PageState.to_xml>, '_from_xml_helper': <function PageState._from_xml_helper>, 'from_xml': <function PageState.from_xml>, '__dict__': <attribute '__dict__' of 'PageState' objects>, '__weakref__': <attribute '__weakref__' of 'PageState' objects>, '__annotations__': {}})
- __doc__ = '\n Contains information to reconstruct a page of the fitpanel.\n '
- __init__(model=None, data=None)[source]
Initialize the current state
- Parameters:
model – a selected model within a page
data –
- __module__ = 'sas.sascalc.fit.pagestate'
- __repr__()[source]
output string for printing
- __weakref__
list of weak references to the object (if defined)
- _check_html_format(name)[source]
Check string ‘%’ for html format
- _convert_to_sasmodels()[source]
Convert parameters to a form usable by sasmodels converter
- Returns:
None
- _from_xml_helper(node, list)[source]
Helper function to write state to xml
- _get_report_string()[source]
Get the values (strings) from __str__ for report
- _old_first_model()[source]
Handle save states from 4.0.1 and before where the first item in the selection boxes of category, formfactor and structurefactor were not saved. :return: None
- _repr_helper(list, rep)[source]
Helper method to print a state
- _to_xml_helper(thelist, element, newdoc)[source]
Helper method to create xml file for saving state
- clone()[source]
Create a new copy of the current object
- from_xml(file=None, node=None)[source]
Load fitting state from a file
- Parameters:
file – .fitv file
node – node of a XML document to read from
- static param_remap_from_sasmodels_convert(params)[source]
Converts {name : value} map back to [] param list :param params: parameter map returned from sasmodels :return: None
- static param_remap_to_sasmodels_convert(params, is_string=False)[source]
Remaps the parameters for sasmodels conversion
- Parameters:
params – list of parameters (likely self.parameters)
- Returns:
remapped dictionary of parameters
- report(fig_urls)[source]
Invoke report dialog panel
: param figs: list of pylab figures [list]
- to_xml(file='fitting_state.fitv', doc=None, entry_node=None, batch_fit_state=None)[source]
Writes the state of the fit panel to file, as XML.
Compatible with standalone writing, or appending to an already existing XML document. In that case, the XML document is required. An optional entry node in the XML document may also be given.
- Parameters:
file – file to write to
doc – XML document object [optional]
entry_node – XML node within the XML document at which we will append the data [optional]
batch_fit_state – simultaneous fit state
- class sas.sascalc.fit.pagestate.Reader(call_back=None, cansas=True)[source]
Bases:
Reader
Class to load a .fitv fitting file
- __doc__ = '\n Class to load a .fitv fitting file\n '
- __init__(call_back=None, cansas=True)[source]
- __module__ = 'sas.sascalc.fit.pagestate'
- _parse_save_state_entry(dom)[source]
Parse a SASentry
- Parameters:
node – SASentry node
- Returns:
Data1D/Data2D object
- _parse_simfit_state(entry)[source]
Parses the saved data for a simultaneous fit :param entry: XML object to read from :return: XML object for a simultaneous fit or None
- _parse_state(entry)[source]
Read a fit result from an XML node
- Parameters:
entry – XML node to read from
- Returns:
PageState object
- _read_cansas(path)[source]
Load data and fitting information from a CanSAS XML file.
- Parameters:
path – file path
- Returns:
Data1D object if a single SASentry was found, or a list of Data1D objects if multiple entries were found, or None of nothing was found
- Raises:
RuntimeError – when the file can’t be opened
ValueError – when the length of the data vectors are inconsistent
- ext = ['.fitv', '.FITV', '.svs', 'SVS']
- get_state()[source]
- read(path)[source]
Load a new P(r) inversion state from file
- Parameters:
path – file path
- type = ['Fitting files (*.fitv)|*.fitvSASView file (*.svs)|*.svs']
- type_name = 'Fitting'
- write(filename, datainfo=None, fitstate=None)[source]
Write the content of a Data1D as a CanSAS XML file only for standalone
- Parameters:
filename – name of the file to write
datainfo – Data1D object
fitstate – PageState object
- write_toXML(datainfo=None, state=None, batchfit=None)[source]
Write toXML, a helper for write(), could be used by guimanager._on_save()
: return: xml doc
- class sas.sascalc.fit.pagestate.SimFitPageState[source]
Bases:
object
State of the simultaneous fit page for saving purposes
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.pagestate', '__doc__': '\n State of the simultaneous fit page for saving purposes\n ', '__init__': <function SimFitPageState.__init__>, '__repr__': <function SimFitPageState.__repr__>, '__dict__': <attribute '__dict__' of 'SimFitPageState' objects>, '__weakref__': <attribute '__weakref__' of 'SimFitPageState' objects>, '__annotations__': {}})
- __doc__ = '\n State of the simultaneous fit page for saving purposes\n '
- __init__()[source]
- __module__ = 'sas.sascalc.fit.pagestate'
- __repr__()[source]
Return repr(self).
- __weakref__
list of weak references to the object (if defined)
- sas.sascalc.fit.pagestate.parse_entry_helper(node, item)[source]
Create a numpy list from value extrated from the node
- Parameters:
node – node from each the value is stored
item – list name of three strings.the two first are name of data attribute and the third one is the type of the value of that attribute. type can be string, float, bool, etc.
: return: numpy array
sas.sascalc.fit.pluginmodel module
- class sas.sascalc.fit.pluginmodel.Model1DPlugin(name='Plugin Model')[source]
Bases:
BaseComponent
- __doc__ = None
- __init__(name='Plugin Model')[source]
Initialization
- __module__ = 'sas.sascalc.fit.pluginmodel'
- function(x)[source]
Function to be implemented by the plug-in writer
- is_multiplicity_model = False
- run(x=0.0)[source]
Evaluate the model
- Parameters:
x – input x, or [x, phi] [radian]
- Returns:
function value
- runXY(x=0.0)[source]
Evaluate the model
- Parameters:
x – input x, or [x, y]
- Returns:
function value
- set_details()[source]
Set default details
sas.sascalc.fit.qsmearing module
Handle Q smearing
- class sas.sascalc.fit.qsmearing.PySmear(resolution, model, offset=None)[source]
Bases:
object
Wrapper for pure python sasmodels resolution functions.
- __call__(iq_in, first_bin=0, last_bin=None)
Apply the resolution function to the data. Note that this is called with iq_in matching data.x, but with iq_in[first_bin:last_bin] set to theory values for these bins, and the remainder left undefined. The first_bin, last_bin values should be those returned from get_bin_range. The returned value is of the same length as iq_in, with the range first_bin:last_bin set to the resolution smeared values.
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.qsmearing', '__doc__': '\n Wrapper for pure python sasmodels resolution functions.\n ', '__init__': <function PySmear.__init__>, 'apply': <function PySmear.apply>, '__call__': <function PySmear.apply>, 'get_bin_range': <function PySmear.get_bin_range>, '__dict__': <attribute '__dict__' of 'PySmear' objects>, '__weakref__': <attribute '__weakref__' of 'PySmear' objects>, '__annotations__': {}})
- __doc__ = '\n Wrapper for pure python sasmodels resolution functions.\n '
- __init__(resolution, model, offset=None)[source]
- __module__ = 'sas.sascalc.fit.qsmearing'
- __weakref__
list of weak references to the object (if defined)
- apply(iq_in, first_bin=0, last_bin=None)[source]
Apply the resolution function to the data. Note that this is called with iq_in matching data.x, but with iq_in[first_bin:last_bin] set to theory values for these bins, and the remainder left undefined. The first_bin, last_bin values should be those returned from get_bin_range. The returned value is of the same length as iq_in, with the range first_bin:last_bin set to the resolution smeared values.
- get_bin_range(q_min=None, q_max=None)[source]
For a given q_min, q_max, find the corresponding indices in the data. Returns first, last. Note that these are indexes into q from the data, not the q_calc needed by the resolution function. Note also that these are the indices, not the range limits. That is, the complete range will be q[first:last+1].
- class sas.sascalc.fit.qsmearing.PySmear2D(data=None, model=None)[source]
Bases:
object
Q smearing class for SAS 2d pinhole data
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.fit.qsmearing', '__doc__': '\n Q smearing class for SAS 2d pinhole data\n ', '__init__': <function PySmear2D.__init__>, 'set_accuracy': <function PySmear2D.set_accuracy>, 'set_smearer': <function PySmear2D.set_smearer>, 'set_data': <function PySmear2D.set_data>, 'set_model': <function PySmear2D.set_model>, 'set_index': <function PySmear2D.set_index>, 'get_value': <function PySmear2D.get_value>, '__dict__': <attribute '__dict__' of 'PySmear2D' objects>, '__weakref__': <attribute '__weakref__' of 'PySmear2D' objects>, '__annotations__': {}})
- __doc__ = '\n Q smearing class for SAS 2d pinhole data\n '
- __init__(data=None, model=None)[source]
- __module__ = 'sas.sascalc.fit.qsmearing'
- __weakref__
list of weak references to the object (if defined)
- get_value()[source]
Over sampling of r_nbins times phi_nbins, calculate Gaussian weights, then find smeared intensity
- set_accuracy(accuracy='Low')[source]
Set accuracy.
- Parameters:
accuracy – string
- set_data(data=None)[source]
Set data.
- Parameters:
data – DataLoader.Data_info type
- set_index(index=None)[source]
Set index.
- Parameters:
index – 1d arrays
- set_model(model=None)[source]
Set model.
- Parameters:
model – sas.models instance
- set_smearer(smearer=True)[source]
Set whether or not smearer will be used
- Parameters:
smearer – smear object
- sas.sascalc.fit.qsmearing.pinhole_smear(data, model=None)[source]
- sas.sascalc.fit.qsmearing.slit_smear(data, model=None)[source]
- sas.sascalc.fit.qsmearing.smear_selection(data, model=None)[source]
Creates the right type of smearer according to the data. The canSAS format has a rule that either slit smearing data OR resolution smearing data is available.
For the present purpose, we choose the one that has none-zero data. If both slit and resolution smearing arrays are filled with good data (which should not happen), then we choose the resolution smearing data.
- Parameters:
data – Data1D object
model – sas.model instance